

Quantifying counterparty risk

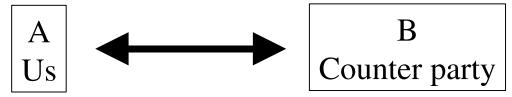
Jens Lund jens.lund@nordea.com 20 Sep 2007, WBS, The 4th Fixed Income Conference

Agenda

- **Definitions of counterparty risk**
- One sided counterparty risk
- **Product specific considerations**
- One or two sided counterparty risk?
- **Model requirements**
- **Trading of counterparty risk**
- **Numerical implementations**
 - 3 suggestions, "regression in MC" in detail
 - How, what to look out for, live demo, ...
- Portfolio calculations by aggregation
- Conclusion

Counterparty risk definition

The risk of losing money on a portfolio of derivative contracts when a counterparty default



- Cashflows at default time τ before maturity T:
 - Payments before τ: according to the contract
 - At default of counterparty B:
 - NPV>0: counterparty owes us money and pays RR^{B*} NPV to us
 - NPV<0: we owe the counterparty money and pay them in full</p>
 - At our default A:
 - NPV>0: counterparty owes us money and pay in full
 - NPV<0: we owe the counterparty money and pay RR^{A*}NPV

Purpose of measuring counterparty risk

- Reservations for future exposure
 - Lines control
- **Pricing**
 - Special price for each counterparty
- Hedging
- Related, but NOT considered here:
 - VaR, expected shortfall
 - Typical 10 trading days
 - Economic Capital
 - 99.7% quantile of unexpected losses on 1y horizon
- **Accuracy needed**
 - Cash-flows/exposure on individual days or the big picture?

Other means of managing counterparty risk

- **Netting agreements**
 - Net between contracts with the same counterparty, also across asset classes
 - Almost always in place
- **Collateral agreements**
 - Make sure exposure never exceeds a given threshold by securing the position with collateral
 - Typical for interbank counterparties and large clients
- **Early termination clauses**

- **Corporate counterparties**
 - Smaller portfolios, but no collateral and higher credit risk

Counterparty risk math definition

 $NPV(\tau) = E_{\tau}[CF(\tau, T)]$, seen from us, counterparty A

$$\begin{aligned} & \mathsf{payoff}^{D}(t) \! = \! 1_{\tau > T} CF(t, T) \! + \! 1_{t < \tau \leq T} \! \left[CF(t, \tau) \! + \! df(t, \tau) NPV(\tau) (\tau) (\tau^A \! + \! \gamma^B) \right] \\ & \gamma^A \! = \! 1_{\tau = \tau^A} \! \left[RR^A 1_{NPV(\tau) < 0} \! + \! 1_{NPV(\tau) > 0} \right], \text{ A defaults} \\ & \gamma^B \! = \! 1_{\tau = \tau^B} \! \left[RR^B 1_{NPV(\tau) > 0} \! + \! 1_{NPV(\tau) < 0} \right], \text{ B defaults} \end{aligned}$$

- •This is two sided counterparty risk, both parties can default
- •One sided: put $\gamma^A=0$ (we cannot default)

One sided counterparty risk

- $\gamma^A=0$, we only consider defaults of our counterparty
- With a bit of tedious, but simple, algebra and law of iterated expectations:

$$E_{t}(\operatorname{payoff}^{D}(t)) = E_{t}(\operatorname{payoff}(t)) - (1 - RR^{B}) E_{t} \left[1_{t < \tau \leq T} df(t, \tau) NPV^{+}(\tau) \right]$$

Value without counterparty risk

Option part in default case Call 0-strike

- RR assumed deterministic
- Adds level of optionality: we need (a function of) the value at a future default date
- Mean over τ and NPV values

Products

- Bank loan portfolio
 - Simple --- value of underlying do not change much!
 - Might have extension clause, correlated to credit quality, complicates matters!
- IRS
 - Simple
 - Value 0 at initiation, but value \neq 0 at future dates
 - Fast approximations can be made
- **FX**
- Swaptions
 - Cash/physical settled makes difference wrt. final maturity
 - Option on option, stochastic volatility
- Credit products
 - Take correlation between underlying and counterparty into account
- Equity
- Portfolios of the full monty...

IRS: Interest Rate Swaps

The general expression simplifies:

$$IRS^{D}(t) = IRS(t) - (1 - RR^{B}) \int_{t}^{T} swaption(t, s, T, K) dQ(\tau \le s)$$

- Q describe default times by hazard rates from CDS quotes
 - CDS up to 10y, trades up to 30y
- Independence between τ and rates assumed
 - Rate distribution does not depend on τ , i.e. we get vanilla swaption
- Weighting options with default probabilities

Impact on price on a single IRS

- IRS^D quote: coupon that gives IRS^D=0
- Market data as of 21-MAR-2007 (rates, vol)
- CDS scenarios:

	Survival Prob			
Tenor	Low CDS 5y=30bp	Medium CDS 5y=100bp	High CDS 5y=300bp	
5 y	97.50%	91.92%	77.67%	
10y	95.07%	84.50%	60.35%	
15y	92.71%	77.69%	46.89%	
20y	90.40%	71.42%	36.43%	

Results:

			Diff in rates in bp		
Tenor	Maturity Date	Rate	Low CDS 5y=30bp	Medium CDS 5y=100bp	High CDS 5y=300bp
5 y	Fri-23-Mar-2012	4.1230%	0.17	0.53	1.50
10y	Thu-23-Mar-2017	4.1890%	0.50	1.62	4.44
15y	W ed-23-Mar-2022	4.2850%	0.91	2.87	7.55
20y	Tue-23-Mar-2027	4.3290%	1.25	3.93	9.96

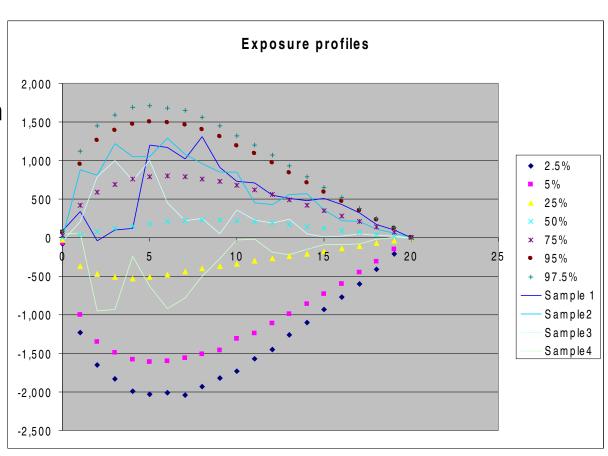
- Adjustments a bit (times ½) lower than in Brigo & Masetti (2004)
 - Vol assumptions different, ...

One or two sided counterparty risk?

- Seen from our point of view:
 - One sided counterparty risk is enough
- But the counterparty has the same view
 - So two sided counterparty risk seem to be the way to go if parties should agree on a common price
- Value depends mostly on difference in CDS spreads
 - As an approximation only see it from the highest rated counterparty's side

Exposure profiles

- Jumps at payments dates
- Need to calculate option on full portfolio
 - Cannot do it trade by trade due to netting
 - Exposures occur at different dates for different swaps
- Single trade/portfolio numbers
 - Quantiles, max, quantiles of max, averaging, etc.



12

Portfolios of interest rate swaps

- **Netting of positions & exposure**
 - Simple example: payer and receiver swap with same strike and maturity
- "Swaption" on general cashflow of (libor) payments
- Damiano Brigo & Massimo Masetti, 2005 find approximate equations
 - Either strictly payer or receiver portfolios
 - Both payer and receiver portfolios give complications
 - This will usually be the case!
- This is going in the direction of specializing for specific products/type of positions/...
- In general assuming little about the products or portfolio composition, then more general models must be used...

General or specific models: I would say general!

- Even with specific models there is a limit to what can be handled
 - Realistic swap portfolio
- For homogeneous portfolios
 - Simple regression techniques will be sufficient in order to give good overview
 - Might be rather add-hoc, but never the less be sufficient
 - Per trade: current NPV + add-on
 - Add-on depends on currency (vol?), time to maturity, counterparty rating
 - Give discount in add-on in order to take typical netting into account
- For non-homogeneous portfolios
 - Something more general needs to be done anyway
 - In particular for exotics

Model requirements

- In general: adds level of optionality
 - Needs value at a future date τ of future remaining payments
- NPV can depend on history up to default
 - Simple example: physical settled swaption past expiry date, ITM/OTM?
- Options
 - Before expiry: needs to price an option on an option
 - SV models
- Correlation between default time and underlying
 - Independence might be reasonable for rates/defaults
 - Credit/equity products: correlation between reference name and counterparty needs to be taken into account
- The interest is in calculating the option part in the adjusted price
 - Might use other models than the pricing model as the focus is different

Trading of counterparty risk

- So far: pricing taking counterparty risk into account
 - Used as MTM (seldom) or only in lines surveillance
- Hedging counterparty risk
 - Swap, option desks, etc. hedge counterparty risk with credit desk in order to trade more with a given limit
 - Jump To Default risk, (1-RR^B)NPV⁺, current exposure
 - Hazard risk: potential future exposure
- Make counterparty risk a market risk like delta/vega/...
- Difficult to do for smaller names with illiquid CDS market
- Risk number calculation adds a lot to numerical problems
 - Would requite a lot more simulations than just the pricing of counterparty risk

Risk neutral measure ↔ real world measure

Risk neutral measure:

- What we have worked with so far
- Used for pricing and hedging

Real world measure:

- Risk management might argue that this is more relevant for lines, reservations, etc.
- Both for market factors and default risk
- Different models

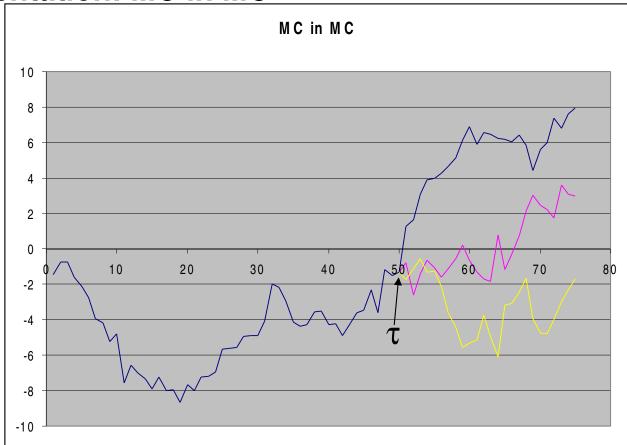
Numerical implementation: MC on Grid

- Original idea by Jesper Andreasen
- Suitable when both Grid and MC models available
 - And products can be priced in grid
- Do grid once backwards
 - Store value for every grid point
- Simulate MC state variables AND defaults forward
 - Pick a grid box based on default time and state
 - The value of future payments are pre computed from the grid!
 - Allows for default/state variable correlation
- Haven't tried it....
- Another idea: Do grid for default state as well, increases dimensionality, but only 2 states in new direction

18

Numerical implementation: MC in MC

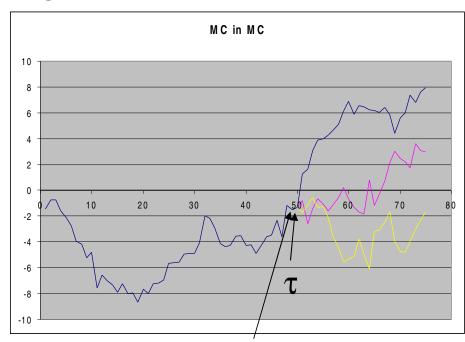
- **Procedure:**
 - Simulate τ
 - Value future CF by MC from that point
- **Optimizations**
 - Product dependent
 - Path in time
 - Jump to date
- Cross asset portfolios/hybrids/...
 - Huge MC engine
- Most exotics are in MC models these days...
- MC in MC explodes computationally, #sim^2



19

Numerical implementation: Regression in MC

- **Procedure:**
 - Simulate τ
 - Value future CF by regression at τ
- **Like Longstaff-Schwartz regression** for early exercise boundary
- Feasible computationally:
 - 2 x #sim (or less)
 - Perhaps already doing the sim for early exercise boundary



Do regression instead of MC

$$E_{t}(\operatorname{payoff}^{D}(t)) = E_{t}(\operatorname{payoff}(t)) - (1 - RR^{B})E_{t}\left[1_{t < \tau \leq T}df(t, \tau)NPV^{+}(\tau)\right]$$

Regression in MC

At each time t, predict value of future cashflow by regression:

$$NPV(\tau) = \alpha (\tau)' x(\tau) + \varepsilon = \sum_{k} \alpha_{k} (\tau) x_{k} (\tau) + \varepsilon$$

- NPV(τ): value of future cashflows at time τ , see next slide on how to get
 - Note: NOT NPV (τ) , as this would make the regression fit worse.
 - Take positive part after the regression!
- $\alpha(\tau)$: linear regression coefficients at time τ
- $x(\tau)$: regression variables like libor, swaprate, swaprate², etc.
 - Choose with care!
 - Should predict value by just knowing current state of the world
- ε(τ): "noise" vector

Regression in MC procedure

Make pre simulation

- Store a set of full paths
- Evaluate forward in time as usual, store values for each time step
- Now go backwards in time in order to find value of future CF at each time
- Find regression coefficients from regression variabes

Make simulation in model:

- Simulate defaults times, either given externally from "credit model", or given by the model itself when correlation between default and asset needed.
- Simulate underlyings, rate, etc., as usual
- Evaluate at time t forward in time as usual, but for counter party risk:
 - Return 0 if not defaulted, i.e. t<τ
 - $-(\alpha'x)(t)$ if defaulted here, i.e. $t=\tau$
 - Pass on current value if previously defaulted, $t>\tau$ (can in some cases be disregarded)

Regression in MC, considerations

- Regression variables:
 - Should predict value of remaining cash-flow from current state of the world
 - Can be a bit tricky to find the best
 - Experiment!
 - Both short end and long end of curve
 - Value of vol with SV models
 - Use powers of variables
 - Need more experience for exotic stuff
- Regress on full range of values instead of a lot of zeros and the positive part, i.e. $NPV(\tau)$ instead of $NPV^+(\tau)$.
 - Better fit at fitting stage
 - Better prediction at prediction state
 - Makes aggregation across trades possible at a later stage!

Live demo.....

- Implemented as "aggregate model":
 - All models can interact with the default model (if they adhere to the interface!)
 - If correlation default \leftrightarrow asset needed the model can provide default times itself.
- Implemented with new keyword in trade description to get regression variable
 - Means pricing and counterparty risk can be done simultaneously!
- Still lots of rough edges! Work in progress!
- This stuff actually works ©
 - Give values in line with "closed form" solution for swaps
 - Reasonable performance
 - Low overhead compared to usual pricing (at least for exotics...)

Future directions

- Implement risk
 - Should be an easy extension
 - Credit risk part by standard trick of swapping differentiation and MC mean (integration)
- Implement the counterparty interface on all models
- Implement plumming to value a whole portfolio of trades in one go
 - "Super model" to value all assets
 - Might NOT be needed if the same defaults τ are used in all models and models return NPV(τ) as a vector for all default times.
 - Possible to aggregate information from several independent trades/models

$$NPV_{total}^{+}(\tau) = \left[\sum_{\text{trades}} NPV_{trade}(\tau)\right]^{+}$$

- More accurate regression because tailored to each individual trade
- Simple to aggregate. Store values from, say, EOD, so effect of new trades can easily be calculated

25

Conclusion

- Counterparty risk adds level of optionality
- Netting agreements → we should look at a portfolio level
 - Might be distributed across books at different trading desks
 - A challenge to infrastructure and systems
- Need to decide on strategy
 - Get efficient approximations for simple single asset class/product portfolios
 - Do all products/asset classes together in huge MC engine
 - Some route in between or combination...
 - Computations could be challenging!
- Pricing of counterparty risk can be obtained in roughly the same time as an MC price.
 - Good enough as probably most interesting for exotics anyway

References

- Michael Pykhtin (ed.), Counterparty Credit Risk Modelling --- Risk Management, Pricing and Regulation, Risk Books, 2005.
- Darrel Duffie and Ming Huang, Swap Rates and Credit Quality, Papers and Proceedings of the Fifty-Sixth Annual Meeting of the American Finance Association, San Francisco, California, January 5—7, The Journal of Finance, 1996, vol 51 (3), pp. 921-949.
- Damiano Brigo and Massimo Masetti, Chapter 10: Risk Neutral Pricing of Counterparty Risk, in Michael Pykhtin (ed.), Counterparty Credit Risk Modelling --- Risk Management, Pricing and Regulation, Risk Books, 2005.
- Damiano Brigo and Andrea Pallavicini, Counterparty risk valuation under correlation between interest-rates and default, Credit Models --- Banca IMI, 14 Dec 2006.