

Quantifying counterparty risk

Jens Lund jens.lund@nordea.com 22 May 2007

Agenda

- Definitions of counterparty risk
- One sided counterparty risk
- Product specific considerations
 - Interest rate swaps
- One or two sided counterparty risk?
- Model requirements
- Numerical implementations
- Trading of counterparty risk
- Conclusion

Counterparty risk definition

- The risk of losing money on a portfolio of derivative contracts when a counterparty defaults
- Cashflows at default time τ before maturity T:
 - Payments before τ : according to the contract
 - At default of counterparty B:
 - NPV>0: counterparty owes us money and pays RRB* NPV to us
 - NPV<0: we owe the counterparty money and pay them in full</p>
 - At our default A:
 - NPV>0: counterparty owes us money and pay in full
 - NPV<0: we owe the counterparty money and pay RR^{A*}NPV

Purpose of measuring counterparty risk

- Reservations for future exposure
 - Lines control
- Pricing
 - Special price for each counterparty
- Hedging
- Related, but NOT considered here:
 - VaR, expected shortfall
 - Typical 10 trading days
 - Economic Capital
 - 99.7% quantile of unexpected losses on 1y horizon

Other means of managing counterparty risk

- Netting agreements
 - Net between contracts with the same counterparty, also across asset classes
 - Almost always in place
- Collateral agreements
 - Make sure exposure never exceeds a given threshold by securing the position with collateral
 - Typical for interbank counterparties and large clients
- Early termination clauses
- Corporate counterparties
 - Smaller portfolios, but no collateral and higher credit risk

Counterparty risk math definition

$$NPV(\tau) = E_{\tau}[CF(\tau,T)]$$

$$\begin{aligned} & \text{payoff}^{\,\mathrm{D}}(t) = 1_{\tau > T} CF(t, T) + 1_{t < \tau \le T} \Big[CF(t, \tau) + df(t, \tau) NPV(\tau) (\gamma^A + \gamma^B) \Big] \\ & \gamma^A = 1_{\tau = \tau^A} \Big(RR^A 1_{NPV(\tau) < 0} + 1_{NPV(\tau) > 0} \Big) \\ & \gamma^B = 1_{\tau = \tau^B} \Big(RR^B 1_{NPV(\tau) > 0} + 1_{NPV(\tau) < 0} \Big) \end{aligned}$$

- •This is two sided counterparty risk, both parties can default
- •One sided: put $\gamma^A=0$ (we cannot default)

One sided counterparty risk

- $\gamma^{A}=0$, we only consider defaults of our counterparty
- With a bit of tedious, but simple, algebra and law of iterated expectations:

$$E_{t}(\text{payoff}^{D}(t)) = E_{t}(\text{payoff}(t)) - (1 - RR^{B})E_{t}\left[1_{t < \tau \le T} df(t, \tau)NPV^{+}(\tau)\right]$$

Value without counterparty risk

Option part in default case Call 0-strike

- RR assumed deterministic
- Adds level of optionality: we need (a function of) the value at a future default date
- Mean over τ and NPV values

Products

- Bank loan portfolio
 - Simple --- value of underlying do not change much!
- IRS
 - Simple
 - Value 0 at initiation, but value ≠ 0 at future dates
 - Fast approximations can be made
- FX
- Swaptions
 - Cash/physical settled makes difference wrt. final maturity
 - Option on option, stochastic volatility
- Credit products
 - Take correlation between underlying and counterparty into account
- Equity
- Portfolios of the full monty...

IRS: Interest Rate Swaps

The general expression simplifies:

$$IRS^{D}(t) = IRS(t) - (1 - RR^{B}) \int_{t}^{T} swaption(t, s, T, K) dQ(\tau \le s)$$

- Q describe default times by hazard rates from CDS quotes
 - CDS up to 10y, trades up to 30y
- Independence between τ and rates assumed
 - Rate distribution does not depend on τ , i.e. we get vanilla swaption
- Weighting options with default probabilities

Impact on price on a single IRS

- IRS^D quote: coupon that gives IRS^D=0
- Market data as of 21-MAR-2007 (rates, vol)
- CDS scenarios:

	Survival Prob			
Tenor	Low CDS 5y=30bp	Medium CDS 5y=100bp	High CDS 5y=300bp	
5y	97.50%	91.92%	77.67%	
10y	95.07%	84.50%	60.35%	
15y	92.71%	77.69%	46.89%	
20y	90.40%	71.42%	36.43%	

• Results:

			Diff in rates in bp		
Tenor	Maturity Date	Rate	Low CDS 5y=30bp	Medium CDS 5y=100bp	High CDS 5y=300bp
5y	Fri-23-Mar-2012	4.1230%	0.17	0.53	1.50
10y	Thu-23-Mar-2017	4.1890%	0.50	1.62	4.44
15y	Wed-23-Mar-2022	4.2850%	0.91	2.87	7.55
20y	Tue-23-Mar-2027	4.3290%	1.25	3.93	9.96

- Adjustments a bit (times ½) lower than in Brigo & Masetti (2004)
 - Vol assumptions different, ...

One or two sided counterparty risk?

- Seen from our point of view:
 - One sided counterparty risk is enough
- But the counterparty has the same view
 - So two sided counterparty risk seem to be the way to go if parties should agree on a common price
- Value depends mostly on difference in CDS spreads
 - As an approximation only see it from the highest rated counterparty's side

Exposure profiles

- Jumps at payments dates
- Need to calculate option on full portfolio
 - Cannot do it trade by trade due to netting
 - Exposures occur at different dates for different swaps
- Single trade/portfolio numbers
 - Quantiles, max,
 quantiles of max,
 averaging, etc.

Portfolios of interest rate swaps

- Netting of positions & exposure
 - Simple example: payer and receiver swap with same strike and maturity
- "Swaption" on general cashflow of (libor) payments
- Damiano Brigo & Massimo Masetti, 2005 find approximate equations
 - Either strictly payer or receiver portfolios
 - Both payer and receiver portfolios give complications
 - This will usually be the case!
- This is going in the direction of specializing for specific products/type of positions/...
- In general assuming little about the products or portfolio composition, then more general models must be used...

Model requirements

- In general: adds level of optionality
 - Needs value at a future date τ of future remaining payments
- NPV can depend on history up to default
 - Simple example: physical settled swaption past expiry date, ITM/OTM?
- Options
 - Before expiry: needs to price an option on an option
 - SV models
- Correlation between default time and underlying
 - Independence might be reasonable for rates/defaults
 - Credit/equity products: correlation between reference name and counterparty needs to be taken into account
- The interest is in calculating the option part in the adjusted price
 - Might use other models than the pricing model as the focus is different

Numerical implementation: MC in MC

- Procedure:
 - Simulate τ
 - Value future CF by MC from that point
- Optimizations
 - Product dependent
 - Path in time
 - Jump to date
- Cross asset portfolios/hybrids/

• • •

Huge MC engine

Numerical implementation: MC on Grid

- Original idea by Jesper Andreasen
- Suitable when both Grid and MC models available
 - And products can be priced in grid
- Do grid once backwards
 - Store value for every grid point
- Simulate MC state variables AND defaults forward
 - Pick a grid box based on default time and state
 - The value of future payments are pre computed from the grid!
 - Allows for default/state variable correlation
- Haven't tried it yet....
- Another idea: Do grid for default state as well, increases dimensionality, but only 2 states

Trading of counterparty risk

- So far: pricing taking counterparty risk into account
 - Used as MTM (seldom) or only in lines surveillance
- Hedging counterparty risk
 - Swap, option desks, etc. hedge counterparty risk with credit desk in order to trade more with a given limit
 - Jump To Default risk, (1-RRB)NPV+, current exposure
 - Hazard risk: potential future exposure
- Make counterparty risk a market risk like delta/vega/...
- Difficult to do for smaller names with illiquid CDS market
- Risk number calculation adds a lot to numerical problems
 - Would requite a lot more simulations than just the pricing of counterparty risk

Risk neutral measure ↔ real world measure

- Risk neutral measure:
 - What we have worked with so far
 - Used for pricing and hedging
- Real world measure:
 - Some would argue that this is more relevant for lines, reservations, etc.
 - Both for market factors and default risk
 - Different models

Conclusion

- Counterparty risk adds level of optionality
- Netting agreements → we should look at a portfolio level
 - Might be distributed across books at different trading desks
 - A challenge to infrastructure and systems
- Need to decide on strategy
 - Get efficient approximations for simple single asset class/product portfolios
 - Do all products/asset classes together in huge MC engine
 - Some route in between...
 - Computations are going to challenging!

References

- Michael Pykhtin (ed.), Counterparty Credit Risk Modelling --- Risk Management, Pricing and Regulation, Risk Books, 2005.
- Darrel Duffie and Ming Huang, Swap Rates and Credit Quality, Papers and Proceedings of the Fifty-Sixth Annual Meeting of the American Finance Association, San Francisco, California, January 5—7, The Journal of Finance, 1996, vol 51 (3), pp. 921-949.
- Damiano Brigo and Massimo Masetti, Chapter 10: Risk Neutral Pricing of Counterparty Risk, in Michael Pykhtin (ed.), Counterparty Credit Risk Modelling --- Risk Management, Pricing and Regulation, Risk Books, 2005.
- Damiano Brigo and Andrea Pallavicini, Counterparty risk valuation under correlation between interest-rates and default, Credit Models --- Banca IMI, 14 Dec 2006.