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Abstract

We consider data from an even-aged, unthinned Sitka spruce experiment in Den-
mark. The data is described in detail and the self-thinning process is modelled
by a survival model for the discrete survival times. The survival model is based
on Cox’s proportional hazards model and allows for spatial dependence among
the trees. The concept of competition indices is discussed at some length.

The results show that the small trees have a higher risk of dying than the large
trees and that Hegyi’s competition index based on basal area is a significant
covariate in the model. The higher the competition index is, the higher is the risk
of dying. Finally, there was also a significant dependence on the trees’ positions
in the experiment.

Preface

This report is part of a PhD course on forest biometrics under supervision of Jens
Peter Skovsgaard, The Danish Forest and Landscape Research Institute (FSL). The
course description is included in Appendix A.

1 Introduction

This report is an analysis of data from an even-aged, unthinned Sitka spruce experi-
ment. The dataset includes breast height diameters at several time points as well as
the positions of the individual trees. Several things are of interest, for example:

e The self-thinning process. As time goes by some of the trees die. A statisti-
cal description of this mechanism provides a significant reference for thinning
strategies and for models for managed forest stands.

e The growth of the trees. The diameters were measured several times, so we
have data on the development of the tree diameters over time. A model for this
process would cast light on the development of even-aged forest stands and it
would be of special interest to model the spatial competition between the trees.
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e The spatial distribution of the diameters at a fixed time point.

e During the observation period for the experiment a minor gap was created in the
southern part of the experiment due to windfall. It could be of some interest to
quantify the spread of the windfall.

The time for this project did not allow me to study all these points, so I have studied
only the self-thinning process. Due to data limitations this study should be considered
a pilot project that may guide further, more comprehensive and detailed analyses.

In Section 3 we describe a discrete survival model with time dependent covariates.
Among the covariates is competition indices that model spatial dependence among
the individuals. The competition indices is based on the relative size of the trees.
As it turns out, such competition indices might be the same as a description of the
distribution of the tree sizes at a fixed time point.

This report is aimed towards both foresters and statisticians. As I am a statistician
myself, some forest related comments are probably banal. On the other hand some of
my points might be understandable by statisticians, but too technical for the average
forester. I have tried to mark some of these points in the text.

In Section 2 we describe the data in detail and comment on graphs in Appendix B.
The size of Section 2 reflects the amount of time I have spent on finding detailed
descriptions of the data and getting familiar with the data. Section 3 is a description
of the self-thinning model, and the results from the analyses are reported in Section 4.
A discussion and some concluding remarks can be found in Section 5.

2 Description of Data

This section describes the data in various ways. Section 2.1 is an introduction to the
experiment and Section 2.2 gives a detailed description of the dataset. The information
in this section is mainly taken from [Sko97b]| and the field note books with detailed
information on each measurement. In order to give a sense of the dataset, a large
number of graphs are shown in Appendix B. Section 2.3 contains comments on the
graphs. The graphs are in the appendix, rather than in the main text, because they
are best reproduced at a large scale and they would then clutter up the main text.

2.1 The Experiment

Experiment MBII is situated in the northern part of Jutland on Thy national forest
district in “Nystrup dune plantation”, compartment 437e. The experiment is conducted
by The Danish Forest and Landscape Research Institute (FSL). This study comprises
plot k£, an unthinned plot of even-aged Sitka spruce. Plot k of the present experiment
is located on exactly the same spot as the unthinned plot k of the previous experiment
MB. Seeds for the present generation of trees originated from the previous experiment.
The map in Figure 1 is reproduced from [Hen58, p. 296] and shows the old design of
the southern part of experiment MB with plot k£ in the middle of the southern part of
the experiment. The size of the plot is approximately 39m x 55m, which is 0.21ha.
Around the plot is a border of a few meters with the same (non-)treatment as the
experiment. As seen in Figure 1 the ground in experiment MBII slopes down towards
the north-west corner, and the difference in elevation is 3 metres.
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Figure 1: Map of experiment MB. Plot k of experiment MBII is placed at
the old A-grade thinning in plot k.

The experiment was re-planted in the spring of 1957 with approximately half larch and
half Sitka spruce, 927 trees in total. The larch trees were planted to prevent late frost
damages in the Sitka spruce in the beginning. The larch trees were felled in 1972-1975,
and the first measurements of the remaining 479 Sitka spruce trees were made in 1975.
There is no further thinning in the experiment and the dead trees due to self-thinning
are not removed from the experiment. The Sitka spruce stand is described as closed
in the southern part and more open in the north-west corner in 1975. Although the
terms “open” and “closed” here refer to the canopy, we get the same impression from
Figure 13 on page 32 that shows a map with the diameters of the trees marked. At the
first measurement in 1975 the basal area for Sitka spruce was 17.8m?/ha and at the
latest measurement in 1995 the basal area was 61.7m?/ha. The corresponding number
of living trees were 2228 trees/ha in 1975 and 1133 trees/ha in 1995.

2.2 The Measurements

The dataset consists of the positions of all the trees (including the larch trees), mea-
surements of all the breast height diameters in 1975, 1979, 1984, 1990, and 1995, and
measurements of some of the individual tree heights at the same occasions.

The rest of this section expands on this very short description, and supplies further
details on the data collection.

The first 11 lines of the main data-file is displayed in Table 1 in order to make the
following description of the dataset more comprehensible.

Each of the 927 trees are allocated a unique individual number that is used for reference
purposes. The species of the trees are Sitka spruce (479 trees), larch (444 trees), and
birch (4 trees). The birch and larch trees were felled and removed during 1972-1975.

For each tree we have the position in terms of row number and number within the
row, as well as the coordinates in a usual xzy-coordinate system. Figure 4 shows the
positions and species in terms of row number and number within the row. We see that
the main species Sitka spruce and larch are fairly homogeneously distributed. Figure 5
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indiv  row no spec dbh1975 dbh1979 dbh1982 dbh1984 dbh1990 dbh1995 x y

1 1 1 SGR 34 0 0 0 0 0 NA NA

2 1 2 SGR 81 87 0 94 0 0 -1.30 1.20
3 1 3 LAR 105 0 0 0 0 0 -1.42  2.57
4 1 4 SGR 140 164 0 187 215 243.5 -1.40 3.72
5 1 5 LAR 85 0 0 0 0 0 -1.52 4.95
6 1 6 SGR 137 158 0 171 176 0 -1.60 6.20
7 1 7 LAR 12 0 0 0 0 0 NA NA

8 1 8 SGR 6 6 0 12 10 0 -1.562 7.66
9 1 9 SGR 104 132 0 178 230 268.5 -1.560 8.97
10 1 10 SGR 67 77 0 80 76 0 -1.50 9.40

Table 1: The first 11 lines of the data-file mb2a.txt.

shows all the positions in the xy-coordinate system. The x-axis runs approximately
in the west-east direction and the y-axis runs in the south-north direction, and rows
run roughly parallel to the y-axis. This means north will be in the up-ward direction
on all the graphs. Compare also with the map in Figure 1. The unit on the axes is
metres (m). The extent of the x position is from -40.1m to -1.3m and the extent of
the y position is from 0.51m to 55.28m. As there are 24 rows, this means that the
average spacing between original rows is (—1.3m — (—40.1m))/(24 — 1) = 1.7m. The
original spacing within rows is on average (55.28m — 0.51m)/37.625 = 1.46m, because
the average number of trees in a row is 927/24 = 38.625. This is in good agreement
with [Sko97b], that states an estimated original spacing of 1.65m x 1.25m. Note that
row number 1 has high z-values (close to Om), whereas row number 24 has low z-values
(close to -40m). The number within the row counts from low y-values to high y-values
for the odd rows, and in the opposite direction for even rows.

The position in the zy-coordinate system is missing for 41 trees because the stumps (or
the trees) have decayed or disappeared from the experiment. None of these 41 trees
has any associated remarks. The distribution on species is Sitka spruce (20 trees),
larch (20 trees), and birch (1 tree).

We would like to define a position for these 41 trees based on their row number and
number within the row. We consider two different situations:

e One or more trees with missing positions are at the end of a row. In this situation
the trees are placed in continuation of the row at a distance as between the two
previous trees in the row.

(These two trees have in all but one case their positions measured. In the single
problematic case, tree number 732, the tree is placed at the distance as between
the two previous trees with measured positions. This seems reasonable from a
plot of the positions.)

e Otherwise, one or more trees are standing in a row with at least one tree on each
side with the position measured. In this case the trees are placed uniformly in
the space between the nearest two trees within the row with measured positions.

The defined positions are marked in Figure 5 with filled boxes.

I believe this algorithm is reasonable, and because the trees whose positions are missing
tend to be small it will probably not matter that much what positions they have.
Anyway, the error made by having a minor error on the positions of a few trees is
probably not greater than if the trees are completely left out from the analyses.

The diameters at breast height (dbh), i.e. 1.3m above ground level, are measured on
all the trees in the spring of the years 1975, 1979, 1984, 1990, and 1995. The unit of
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the measurements is mm. Of course the larch and birch trees, that were felled and
removed at the latest 1975, are only measured in 1975. If they were felled before 1975
their stump were measured. The exact dates the measurements are taken are 25 May
1975, 22 May 1979, 15 May 1984, 11 January 1990, and 10 May 1995.

On 24 November 1981 windfall occurred in the southern part of the experiment together
with a few trees in the middle that were exposed too. The placement of the 43 fallen
trees are marked in Figure 6. Dbh measurements were taken on the fallen trees on
30 April 1982, and the fallen trees were removed from the experiment afterwards.
Note that the border of the experiment were not harmed by the windfall, a common
phenomenon according to foresters. By now there are self-sown birch in the southern
part of the experiment.

In the data file (Table 1), the dbh measurements implicitly define the time of death
for the tree. We define the time of death as the time of the first measurement occasion
the tree is not measured. Special care must be taken with the trees that are hit by the
windfall in 1981 or still are alive at the last measurement in 1995. We only know that
the trees survived longer than the windfall or 1995, respectively. In a survival analysis
terminology they are “censored” at these events. We assume that the 43 trees in the
windfall are censored at the measurement in 1984. This implies that the 43 trees were
alive prior to the measurement in 1984, which might not be the case. However this
seems the most reasonable to do. Table 2 shows the number of dead and censored
Sitka spruce in the measurement years.

Year 75 1779 | 84 | 790 | 95 | Total
Dead 1 2 9 66 | 115 | 193
Censored | 0 0 43 1 0 243 | 286
Total 1 2 52 | 66 | 358 | 479

Table 2: Number of dead individuals, Sitka spruce.

In the same years as the dbh measurements were taken some of the heights were
measured too. For a start 53 trees were measured in 1975, whereas only 30 trees
were measured in each of the years 1979, 1984, 1990, and 1995. In total, height
measurements involves 54 different trees, so the 30 trees were in general chosen among
the original 53 trees. The rule is to use a tree as a height tree as long as it is alive.
When a tree dies, another one of the original 53 trees are chosen to ensure that 30
height measurements were taken. The height trees are distributed regularly in space
as seen from Figure 7. The unit of the height measurements is dm. We will not use
the height measurements in the survival model in Section 3, but we comment on some
graphs in Section 2.3.

Two remark fields in the data-set are used for additional information about the trees.
The remarks are dead (9 trees), fork (41 trees), resin (1 tree), great spruce bark beetle
(1), and bark peel by deer (1 tree). Note that only the first part of a forking tree is
marked as such and the following parts are recognized by having the same position.
Further note that two trees with the same position have the remark “not fork”. The
second remark field is only used four times, and in all cases to indicate a dead fork.
The 13 trees with the remark “dead” are all measured at the last measurement in
1995, and the interpretation of the remark is that it will not be measured at the next
measurement time. However this may also be true for a lot of other trees, so this
information is not really useful and will thus not be used.
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In the analyses below forks are not treated in any special way, but rather as two
(or more) “independent” trees that happen to have the same position. This is quite
reasonable. It is e.g. perfectly possible that one of the forks die before the others do.
The two trees at the same position, that are not forks, are treated in the same way
as if they were forks. This means they get no special attention. Of course, forks are
not independent, but this approach means that the dependence (competition for light,
water, etc.) among forks are modelled as the competition among all other trees.

2.3 Graphs

In this section we comment on some graphs of the raw data. We do not try to model
the data in this section, but rather make unsophisticated observations from the graphs.
The number of graphs is rather large so they are displayed in appendix B.

The graphs in the appendix are organized as follows:

e Figure 4-7 all regard the positions of the trees. We have commented on these
graphs previously in Section 2.2.

e Figure 8 and 9 show the longitudinal development of the diameter measurements.
e Figure 10-12 display graphs of the diameter distribution.

e Figure 13-17 are maps of the experiment with circles that have a diameter pro-
portional to the diameter of the tree placed at the position of each tree. Trees
that have died before the measurement are marked by small filled circles. Note
that the largest circle in each graph has the same size in all the graphs and that
the scale of the circles are different from the scale on the axes.

e Figure 18-21 are maps similar to the previous ones, but with the diameter of the
circle proportional to the diameter increment of the tree!. As before, note that
the largest circle in each graph has the same size in all the graphs.

e Figure 22 is a plot of the increments versus the diameters.

e Figure 23 is a collection of plots of height versus dbh and log(dbh).

The plot of the longitudinal development in Figure 8 can be very disorderly to look
at, so in Figure 9 all the lines are displayed exactly once in one of ten displays. The
lines in the plot stop at the last measurement, so when the trees are measured the last
time, it looks almost like a vertical line of line ends. When looking at the trees that
die two things can be noted. First, the trees that die tend to be small, and second,
they seem to have very small increments. It can of course be discussed whether the
trees have small increments because they are dying or they die because they are small
and have small increments.

The larch trees in the experiment were present to help start the Sitka spruce culture.
From Figure 10 it is immediately clear that the larch trees are in fact larger than Sitka

!This does not imply that the area of the circle is proportional to the increment in the basal area.
One might argue that the eye is more focused on changes in the area of the circles than in changes in
the diameter, and further that the area of the circle should be proportional to the diameter increment.
One might also argue that the basal area increment is more biological relevant and should be used
instead. The variations are endless, and the graphs show more or less the same picture irrespective
of variable chosen.
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spruce in 1975. This means that they, at least in the beginning, grow faster than Sitka
spruce.

Figure 11 and 12 compare the size distributions for the Sitka spruce trees in the
measurement years. The boxplots? in Figure 11 are a simpler way to illustrate the size
distribution than the histograms in Figure 12. It is seen that the size distribution is
right skewed in all the years. This is expected when the trees are small (after all, they
all start at 0 at the same time), but it is also the case when the trees become larger.
This is probably a kind of starting effect: the trees that start well are most likely
to fare well for the rest of their lives. The reason that a particular tree is better off
from the beginning might be pure chance or a difference in the genes of the trees. The
histograms in Figure 12 show that the distributions are in fact very broad, particularly
for the later years. The size distribution might be described as approximately uniform
on an interval with a heavy right tail attached. This is also the impression from the
boxplots in Figure 11 where it is seen that the first quartile has approximately the
same size as the distance from the first quartile to the median and as the distance
from the median to the third quartile, but the distance from the third quartile to the
right end of the data is larger than this common distance. In [Sko97a], J. P. Skovsgaard
outlines in Section 6.3.2 a theoretical development of the size distribution and he uses
this as a part of his hypothesis 2 on page 52. The theoretical development of the size
distribution is left skewed — symmetric — right skewed — symmetric. The present
dataset cannot confirm this development. This might be because we do have diameter
measurements for a 20 year period only and thus do not cover the entire life span of
the trees. J. P. Skovsgaard [Sko97a, p. 187] also rejects the hypothesis for stands like
the present, although he in contrast talks about left skewed distributions during the
whole life span.

One striking feature when comparing the histograms in Figure 12 is that all the distri-
butions, except that from 1995, have a number of small trees, i.e. trees with diameter
below say 10cm. All these small trees were declared dead in 1995. It could of course
very well be that they died. But as seen from Figure 8 it looks like these trees have
had about the same size for a long period, and it is amazing all of them die in the
same time interval.

The maps in Figure 13-17 tell something about the spatial distribution of the sizes.
As already noted the map from the start of the experiment in 1975 (Figure 13) shows
that the northern part of the experiment is more open than the southern part. This
impression remains valid during the whole period. Note that from 1984 and on the
main part of “dead” trees in the southern part of the experiment is the trees in the
windfall. These were removed. If we look at the positions of dead trees in 1990 and
1995, Figure 16 and 17, it seems like the dead trees are more likely to be in the east
side of the experiment than the west side. This is confirmed by the results in Section 4
from the survival model in Section 3. It is seen from the plots that the small trees are
more likely to die than the large trees.

The maps in Figure 18-21 of the increments suggest that in the beginning, i.e. 1979
and 1984, the increments are larger in the more open northern part than in the southern

2A boxplot tells some basic facts about the distribution in a way that makes it easy to compare
several distributions. The horizontal line in the interior is located at the median of the distribution.
The box starts at the first quartile (25%) and stops at the third quartile (75%). The whisker extending
from the top of the box goes to the first data value below the median+1.96 x“the interquartile distance”,
where 1.96 is the 0.975 quartile of a N(0, 1) distribution. The whisker at the bottom is defined in a
similar way. For data having a Gaussian distribution, approximately 99.2% of the data falls inside
the whiskers. Data points which fall outside the whiskers are indicated by horizontal lines.
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part. Later on, 1990 and 1995, the increments seem to be more uniformly distributed.
Figure 21 of the increments up to 1995 indicates that a few trees have very large
increments compared to the other trees because there are many small circles present.
In fact, Figure 9 of the longitudinal development shows that the increments in the
period up to 1995 are smaller than in the previous periods and that a few trees despite
this have large increments in the last period. One of the main conclusions in [Sko97a,
p. 202] is that unthinned Sitka spruce stands is good at differentiating the diameter
sizes. A comparison between the maps of the sizes of the trees with the maps of the
increments show that the large trees also have the largest increments. This is probably
more clear from Figure 22 that directly shows the increments and diameters plotted
against each other. When comparing the plot of the dead trees marked in 1990 with
the plot of the increments in 1984 it is seen (once again) that the trees that die are
the trees with small increments. It is quite clear from the plot of the increments that
more trees have negative or zero increments in the eastern part than the western part
of the experiment. This can also be seen from the plots in 1995 (dead trees) and 1990
(increments), although not as noticeable.

Henriksen [Hen81, p. 14, 56| argues that the diameter-height-regression height = o +
Blog(dbh) is a simple but very useful model. Figure 23 is a set of plots of height versus
dbh and log(dbh). At first sight it looks like the simple regression height = o + #dbh
would be a good fit to the data in 1975 and 1979, whereas the regression height =
a+ Flog(dbh) would be best in 1990 and 1995. In 1984 either regression would fit the
data. This means that there is a development in time: the relation between dbh and
height changes over time. Henriksen [Hen81, p. 21] mentions several aspects of the
development in time, but not that the regression with log(dbh) should be inadequate.
I haven’t found any further comments in [Hen81] on this, but have been told that the
regression with log(dbh) is often not adequate in unthinned stands.

3 Self-thinning — a Discrete Survival Model

3.1 Introduction

In this section we make a model for the self-thinning. This is in fact a model for
survival of the trees. The survival times for the trees are continuous, but the survival
times are only observed to be in some discrete intervals between the inspections and we
thus have interval censoring. The stand is even aged, so all the trees are censored at the
same ages and we have no hope of estimating the continuous life time distribution. In
the following we make a discrete survival model with spatial dependence and we end up
by modelling the discrete survival times with a grouped version of Cox’s proportional
hazards model.

Section 2.2 describes among other things how the discrete dead and censoring times
in Table 2 are inferred from the measurements of the diameters. We will use all the
living Sitka spruce trees in 1975 as our population and Table 2 shows that this is 478
trees.

Sections 3.2-3.3 are an overview of various models for discrete survival times. We start
by introducing some notation (Section 3.2) and go on to describe models where the
discrete time hazard is modelled (Section 3.3). Section 3.4 and Section 3.5 discuss in
detail how time dependent covariates should be used and how we will allow for spatial
dependence through competition indices.
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3.2 Notation for Survival of One Tree

Let Y € {1,...,k} be a discrete survival time with distribution P(}Y" = j) = «; for
j € {1,...,k}. Define the discrete distribution function v; = P(Y < j) = m +---+7;

and the di.sclrete hazard \; = P(Y = j|Y > j) = 7Tj+7'l:]'.+7'(']c = 7{:,;:7:. Note that
FjZAjH?:_l(l—)\i) and P(Y>j)=1—’)/j= gzl(l—)\i).
If we have a vector of covariates #' = (z1,...,74) € R? in addition to the survival

time Y we will write m;(z), vj(x), and A;(z) for the point probabilities, distribution
function and the discrete time hazard given the covariate z. This means e.g. that we
have the relation

j—1
mi(x) = M) [ (1 = i) (1)
i=1

3.3 Modelling of Discrete Time Hazards

The discrete time hazard Aj(x) is often modelled when we consider discrete survival
times. Sheike and Jensen [SJ95, Sec. 2| outlines several such approaches. One ad-
vantage of modelling Aj(x) is the easy interpretation in a survival analysis context
and that we can use standard software for generalized linear models (GLM) for estima-
tion. Both of these aspects use the connection (1) between m; and X;. In the survival
analysis context here it is natural to interpret this relation as a product built step-
wise as time goes by since one can only reach a state (time point) by going through
all the former states (time points). These models are also called “sequential models”
in [FT94, Sec. 3.3.4]. Estimation is easy with standard software for GLM because the
likelihood (1) for one individual can be interpreted as the likelihood for a “fake” dataset
of binomial variables z; = 0,...,2j_1 = 0,2; = 1, so that m; = [[1_, \7/(1 —\;)'7% as
outlined in [FT94, p. 322]. Censoring can of course also be handled by letting all the
y variables in the fake dataset take the value 0.

We will now look at some specific choices of the link function for A;(z). The link
function says how Aj(x) depends on the covariate vector . The sign of the parameter
B € R? in the following is chosen so that larger values of the components of z give
higher mass to large values of Y provided g > 0.

Proportional hazards Assume that there is an underlying continuous survival time
with continuous time hazard A(t|z) = Ao(t)e*?, which is Cox’s proportional
hazards model. Let dt denote the length of a small time interval. Then the
interpretation of the hazard is that A(#|x) dt is the probability of dying before
time t + dt given the individual has survived to time ¢. The survival function is
S(t|z) = exp(—Ag(t)eP) with Ag(t) = f[f Ao(s) ds. When we make a grouped
version Y € {1,...,k} of a variable with this distribution according to intervals
[0,01],101,62], ..., ]0k—1,00], we get v;(x) = 1-=5(0;|x) = 1—exp(—A0(9j)e_”,B)
and \;(z) = 1 —exp(—e *B(Ag(#;) — Ag(hj—1))). This means that the comple-
mentary log-log transform? cloglog(\;(z)) = log(—log(1 — \j(z))) = é]- — 2/ of
the hazard A;(x) is linear with é]- =log(Ao(0;) —Ao(#j—1)). Thisis e.g. described
in [FT94, p. 318].

3The complementary log-log transform is the inverse of the distribution function F () = 1 —
exp(—e’) for the extreme-minimal-value distribution.
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Logistic model The logistic model uses the logit link*

logit(\;(x)) = log % ()

See references in [FT94, Sec. 9.2| and [SJ95].

Log-link log(\;) = 9} — a'3. See reference in [SJ95]|. This is a proportional hazards
model for the discrete time survival time distribution. A problem is that we
must have unnatural restrictions on the parameter space, because 9} — 2/ 3 must
be < 0 in order for A; to be in ]0, 1].

We use the grouped version of Cox’s proportional hazards model in the following. The
choice of this model is primarily for its appealing and easy interpretation.

3.4 Time Dependent Covariates

We go into detail about the choice of covariates in this section as we want to have
time dependent covariates and spatial dependence among the individuals. The use for
time dependent covariates is obvious because we suspect the probability of dying to
depend on the current size of the tree, which develops through time. Furthermore we
suspect the trees to have a degree of inter-dependence. If two large trees are standing
very close to a small tree we would expect the small tree to have a higher risk of dying
than if the two large trees were not present. So we want to model some kind of spatial
dependence between the trees.

The discrete time hazard models in Section 3.3 are very easily modified to allow time
dependent covariates. Assume that for each time point 1,...,j up to and including
the time of death j we have a covariate vector, z1,...,2;. We now exploit the Markov
structure in equation (1) by using the likelihood function mj(z) = X;(x;) Hf;ll(l -
Ai(z;)), where in each step we condition on the present value of the covariate, but still
use the same link function as before for the hazard A;. In our application on trees it
seems natural to use the dbh measurements at the previous measurement as covariate
in the regression for survival in the present period because the size of the tree affects
what comes in the following period. A sketch of this setup is in Figure 2.

57 75’79 82 84 90 95
| | | | | | |
| | I | |

Windfalls
Discret, time 1 2 3 4
Covariates from year g5 79 14 90

Figure 2: Sketch of discrete times and covariates used.

We have only considered models for one individual so far, and we will now go on and
describe a model for all the trees in the stand and allow for dependence between the
trees. In the classical survival analysis context dependence between the individuals
have e.g. been modelled by frailty models®. (A recent reference is [Pet96].) However,

et

“The logit transform is the inverse of the distribution function F(t) = s

bution.
®In short, a frailty model is a model with an unobserved latent variable.

for the logistic distri-

10
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this approach does not seem natural here as the dependence among individuals depend
on the distance between them and not on any natural groups of individuals. We allow
for dependence through the covariate process instead.

We will build the model stepwise through discrete time. Let S denote the set of trees
and let t = 1,...,k be the discrete time points considered. The special time point
t = 0 denotes an imaginary time point before the first inspection. Introduce the set of
living trees Sy at time ¢. We assume that all trees are alive before time t = 1s0 Sy = S.
Further note that S; O Sy41. For s € S and ¢t € {0,...,k} we put N(s,t) = Ns(t) =0
if tree s is alive at time ¢ and N(s,t) = N,(t) = 1 if tree s is dead at time ¢. This
means S; = {s € S| Ns(t) = 0}. Define the covariate process X as X(s,t) = X;(1),
the measurements on tree s € S at time t. By X(¢) we denote the collection of all
measurements at time ¢, X (¢) = (X(s,t))scg, and if a tree is dead at time ¢ the dead
status is the measurement.

We now assume that conditionally on the covariates (X (s,t—1))s¢cs,_, and the dead/alive
status at the previous measurement the survival of trees in the following time period
are independent events. The important point here is that we allow the survival proba-
bility of tree s to depend on the measurements and the status of the other trees S'\ s.
The likelihood is now

L= H( [T xex@E-—1) [ (- rux- 1)))). (2)

t=1 SEStfl\St SESt

Here As (X (t — 1)) denotes the hazard of tree s at time ¢t with covariates X (¢ —1).
With this notation the covariate z; at time 4 is X (i — 1).

For each tree s we will use the measurements on the tree itself and some measure of the
competition from the neighbouring trees as covariates. In Section 4 we mention the
covariates based on the single tree and in the next Section 3.5 we discuss the measures
of competition from the neighbouring trees.

It should be noted that the present setup without problems can be generalized to a
continuous time setup. (This paragraph might be a bit technical.) The framework of
counting processes as described in [ABGK93| is natural to use in the generalization.
The counting process setup does not handle simultaneous deaths easily, but this prob-
lem could be solved if necessary. The choice of covariates measured at the previous
inspection is quite obvious in the discrete time setting here. However, in a continuous
time setting the analogue is that the covariate processes should be predictable in the
relevant filtration. It is quite easy to check, that if we in the proportional hazards
model in Section 3.3 have a predictable time dependent covariate that is piecewise
constant between the grouping time points, then we get a model that is linear in the
parameters with a cloglog transformation of A;. This model is exactly of the above
type. This means that we can regard the discrete time hazard model with cloglog-link
as a grouped version of a Cox regression model with time dependent covariates.

3.5 Definition of Competition Index

We would like to include a measure of the size of a tree compared to the other trees
surrounding it as a covariate in the regression model. This could tell something about
the competition between the trees. V. K. Johansen [Joh96] reviews several such mea-
sures also known as competition indices (C1) in order to make a growth model spanning
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over several periods. Tomé and Burkhart [TB89] also reviews a rather large number
of cIs and suggest some modified indices and compare how good the indices predict
growth. Pukkala [Puk89] compares two different approaches to the definition of a CI
and takes into account the direction of the competition. In this paper we focus on a
competition index of the type suggested by Hegyi [Heg74|, which often is rated as one
of the best, rather than compare several competition indices. We end this section with
some more general and technical remarks about the definition of competition indices.

Let As(t) denote the basal area for tree s € S at time ¢. We will leave out the
dependence on t in the following since all variables will regard the same time point.
At each time step we recalculate the competition index based on the measurements at
the previous time point. The competition index suggested by [Heg74] is

Az
=) A, d(s,3)

5#s:d(s,8)<4m
where d(s, ) is the distance between tree s and tree §.

We modify this cI slightly. First of all we have trees (e.g. forks) at a distance from
each other of Om that would cause the CI to take the value co. Some trees are also very
close so they cause an unrealistic high CI1. These problems are alleviated by defining
the minimum distance in the C1 to be 0.5m. Second, some small trees also get an
unrealistic high C1. In order to avoid that a minority of the trees (approximately 15%)
make the distribution of Cr highly skewed we impose the restriction that the factor
A;/As is at most 16. With my modifications the cI is

min(f‘—i, 16)

C =
's N Z max(d(s, §),0.5m)
§#s:d(s,8)<4m

with the sum ranging over living trees only.

Johansen defines in [Joh96] the competition index as the sum over the n living neigh-
bour trees nearest to tree s. I find my approach that is also used in [Heg74| more
natural, but it will probably not make any great difference in this experiment where
the trees are placed quite regular.

In the same way as above, we define a competition index based on the diameters instead
of the basal area. In this case we take the maximum fraction between the diameters
to be 4. The original definition of the cI in [Heg74| was based on the diameters.

Figure 3 is two plots of the CI based on basal area in 1975. As seen from the first
plot the distribution of CI is heavy tailed. The second plot shows the CI versus the
diameters and it confirms that a large CI is most predominant among small trees. It
may be noted that from several plots like Figure 3 it seems like the distribution of the
CI is approximately the same over time, and that the distribution of the cI based on
the diameters have a quite similar shape, although a different scale and not quite as
heavy a tail.

We will now go on to some more general and technical considerations about competition
indices. This discussion was initiated by Antti Penttinen in some remarks to a talk
given by me at “workshop: spatial statistics and G18” in Gothenburg, November 25-26,
1997. The discussion continued in private communication [Pen97].

Stoyan and Grabarnik [SG91| defines energy marks for a Gibbs point process and
show certain moment properties of these energy marks. The results are also men-
tioned in [SKM95, p. 180, 191|, which is an overview of stochastic geometry. In our
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Figure 3: Plots of CI based on basal area in 1975. The upper plot shows
C1 versus the number of the tree, so the vertical distribution of points give
an impression of the distribution of cI. The lower plot shows C1 plotted
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situation the positions are fixed in advance and we will condition on the positions, so
we will instead of point processes need the theory for Markov random fields (MRF).
The definition of the energy marks can easily be generalized to MRF and marked Gibbs
processes, and essentially the energy mark is a bijective transformation of the condi-
tional probability density at each node (tree) given all the other nodes (trees). This
figure is of course a measure of the “stress” on each node caused by the neighbours
or in other words the relative size of a tree compared to the neighbours. Because we
compare with the neighbours only, the relative size is in a local sense and not in a
global sense as e.g. the quartile corresponding to the size compared to the size of all
the trees. Intuitively this conditional probability is an “optimal” choice of CI and an
interesting problem is to make precise the meaning of the word “optimal”. In our case
we look for a linear predictor in a specific GLM-model.

The drawback of this approach is that a reasonable distribution for the MRF consisting
of the tree diameters at a specific time point must be specified and estimated. In
this context it is natural to suggest a Gibbs type distribution specified by a set of
neighbourhood relations and a pair potential function #. The neighbourhood relations
can e.g. be chosen as the natural “lattice” put on top of the set of trees®. The likelihood
for such a distribution is

p(X) = % exp (Z 0(Xs, X5,d(s, §))>

s~§

where Z is the normalizing constant, the sum is taken over all pairs of neighbours, and
the pair potential # is allowed to depend on the distance between the two nodes besides
the values at the two nodes of course. The dependence on the distance compensate
for the imperfectness of the “lattice”. The pair potential function might be estimated
by non parametric methods or have a parametric form. Non parametric estimation of
pair potential functions is e.g. considered in paper 2 in [Hei97|, namely [HP95|.

A point of initial confusion for my self was the dependence on distance but not e.g.
direction. It is easy to verify that it is not reasonable that the covariance function
between two nodes (trees) does depend on the distance between the two nodes only:
two trees at distance, say, 3m cannot have the same covariance’ irrespective of whether
there is a tree in between. However, it seems more natural that the pair potential
function does depend on the distance only. The pair potential function measures
the “interaction” between two neighbours at short distances whereas correlation might
very well exist at larger distances. Even though the pair potential does only depend
on distance the covariance function also depend on the positions of the points because
of the neighbour relations.

The above approach suggest that we must make a model for the simultaneous dis-
tribution of the diameters at a fixed time point. On the other hand we defined a
competition index, that was a sum over neighbours with each term depending only on
the actual tree, the neighbour, and the distance between them. In this way we have
actually defined a MRF for the diameters. The energy for a specific node (tree) given
the other nodes is the cI!

5The lattice is not a perfect lattice, e.g. because the number of trees in a row vary. We use a
neighbourhood structure that looks as much as possible as a lattice.

"Wilder and Stoyan [WS96| outlines several problems when variograms are used to make models
in “point process statistics” instead of the usual context of geostatistics. These problems are the same
in the MRF setting. The problems arise especially when there is competition between the points.
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These considerations seem to imply that the problem of defining a good CI is the same
as making a good model for the simultaneous distribution of the diameters at a fixed
time point and then find the conditional probabilities. This idea has not been pursued
further here.

4 Results

In this section we present the results from the analyses of the model with the likelihood
function (2) and a cloglog-link for the discrete time hazards X (X (t—1)) as described
in Section 3.

We use the diameter (dbh), the basal area (ba), and the competition indices based
on the diameter (cidbh) and on the basal area (ciba) as covariates in our model. In
Section 2.3 it was noted that Figure 16 and 17 suggest that the dead trees are a bit
more likely to be in the east side of the experiment. For this reason we also include
the coordinates z and y as well as their product® as covariates.

The results from the analysis show the consistent picture that the variables dbh, com-
petition index based on basal area, and x and y coordinates are significant, whereas the
variables basal area and competition index based on dbh are non significant. Likewise
the product zy of the x and y coordinates can be removed from the model.

The test probability of removing the product zy from the full model is 53%. It seems
natural that one of dbh and basal area, as well as one of competition index based on
dbh and basal area should be in the final model. The test probabilities in Table 3
support the impression that the model with dbh and competition index based on basal
area gives the best description of the data.

‘ ciba cidbh
basal area | 12% <0.1%
dbh 50% 10%

Table 3: Test probabilities for the model including the variables in the
table as well as the z and y coordinates against the full model.

Table 4 shows the parameter estimates. The time parameters are not that interesting
per se, but it is worth noting that the values get larger as time goes by. This is because
the probability of dying increases with time which is immediately seen from Table 2.
The interpretation of the parameters for the covariates is best done in the underlying
Cox proportional hazards model.

Table 5 shows for the four covariates the factor that should be multiplied on the con-
tinuous time baseline hazard with a certain increase in the variable and the confidence
interval for these values. These values are based on Table 4, and e.g. the value for dbh
is exp(—50+0.023) = 0.32 and the confidence interval is the confidence interval for the
parameter transformed with the exponential function. It is a part of the underlying
Cox model that this factor depends only on the increase and not on the current value
of the covariate.

It is seen that whenever the diameter is increased by 5cm the hazard is only one third
of what it was previously. This means that the larger the tree is the smaller is the risk

8The product zy of the coordinates can be thought of as a “pseudo covariate” that models a sort
of dependence between the z and y coordinates.
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Variable | Estimate Std. Error
timel -3.90 0.80
time2 -2.29 0.57
time3 0.41 0.45
time4 2.94 0.49

dbh 0.023 0.0028
ciba -0.024 0.0060

T -0.026 0.0076

Y 0.016 0.0064

Table 4: Parameter estimates.

Variable ‘ Increase Factor Confidence interval

dbh Bem 032 [0.24;0.42]
ciba 10 128 [1.13;1.43]
x 10m 1.30 [1.12; 1.51]
y 10m 0.85 [0.75; 0.97]

Table 5: Factor to multiply on the baseline hazard in the Cox proportional
hazards model.

of dying. The hazard increases with almost one third when the CI is increased by a
value of 10. In Section 2.3 it was noted that the dead trees seem more dominant in
the east part of the experiment. This is confirmed by the estimate of factor for the z
parameter — when we go 10m more to the east, then the hazard is increased by one
third. The estimate of a decrease of the hazard by 15% when we go 10m north is not
that obvious from the plots in Appendix B. On the other hand the test probability of
removing the y variable is around 1.2% so this effect is not highly significant.

The choice of radius 4m in the definition of the competition index is somewhat ar-
bitrary, although the discussion in the end of Section 3.5 suggests a relatively small
radius. However, the same analyses as above were also carried out with a radius of
15m in the definition of the cI. The test probabilities and the parameter estimates are
almost the same and the same variables are significant. However, there is a tendency
that the estimates of the parameters for the two competition indices are about 1/3 of
the value when the competition indices are defined with a 4m radius. This means that
the factor above for the 1 should be raised to a power of 1/3 and thus the factor will
be closer to one.

5 Discussion and Conclusion

In the above analyses we have not talked about model checking and goodness of fit
tests. The underlying Cox model make two assumptions:

e The hazards are proportional for all individuals.

e The hazard is log-linear in the covariates.

We cannot really check the first assumption in this data set since we do not have
deaths on many time points. Table 2 shows that the vast majority of deaths fall in the
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last two time intervals so in fact we almost only observe the dead time to be in one of
three intervals.

The log-linearity would usually be checked by some plots, but it is not possible to
make any good diagnostic plots because we only have one 0-1 observation for each
combination of the covariates. Instead the model can be checked by introducing a
factor with groups of the continuous covariates which we subsequently try to remove
in a test. Thus the covariates dbh, ciba, cidbh, x, and y, are grouped into factors at 4
levels. The levels are chosen to divide the covariates at the quartiles?. The goodness
of fit test that removes all the factors have a test statistic with value 34.2 with 15 df.
This gives a test probability of 0.3% which would normally be regarded as significant
and we must reject our initial model. However, it is not extremely significant and in a
stepwise test with removal of the factors one after one, no one of the tests have a test
probability below 2.6% if the tests are done in a “clever order”. If the tests are done in
a “random” order the lowest test probabilities are around 1% and there are several high
(>10%) test probabilities. As already mentioned the distribution of the competition
indices is highly skewed with a heavy right tail and this might also affect the behaviour
of the regression estimates. All in all I believe that the results from the analyses are
reliable, although further investigation of the behaviour of the model should be carried
out. These investigations could be on the influence of the highly skewed distributions
of the competition indices, and over-dispersion models as e.g. random effects models
considered in [SJ95]. Unfortunately the time for this project do not allow me to pursue
these important matters further.

We also assumed that the trees were independent in the following period given the
current status. This assumption is obviously not fulfilled since there is an ongoing
competition between the trees, but it suffices as a simple approximation. The validity
of this approximation might perhaps be investigated by some sort of permutation
test. In general the “level” at which some sort of independence is assumed might
be investigated further together with the consequences for the model as a whole. In
Rathbun and Cressie [RC94| they find in a growth model that it is satisfactory to
describe the increments as independent, whereas Penttinen et al. [PSH92| find in two
of three examples that the size of trees at a fixed time point can be described as
independent. One of the two examples with independent sizes in [PSH92] is in a
thinned plot.

In this report we use a model for the discrete time hazard to describe the discrete
survival times. These discrete survival times could be considered as ordinal data and
a common regression model for ordinal data is the McCullagh model as described
in [McC80], [FT94, Sec. 3.3.1| or [MN89, Sec. 5.2.2]. These models are not suitable for
our purpose because they do not allow the incorporation of time dependent variables
in any obvious way, however.

It would have been interesting to study the effect of the dead trees on the living trees
and in e.g. [TB89] the dead trees are included in the calculation of a special 1. But
as noted almost all the trees died in the last two periods so it would just make sense
in the last period and we have not gone further into this.

As seen in Figure 8 it seems like the diameter increment is approximately zero for the
trees that die, so it is tempting to use the diameter increment as a covariate. This is
not practical, however. We cannot use the increment in the time period going back to

°This is the reason the the covariate basal area is not grouped. Such a factor would be identical
to the factor based on dbh since basal area is a monotone transformation of dbh.
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the previous measurement because we must use the measurement at the present time
point to find this number. This means that we use a measurement taken at the present
time point to predict the course of the tree in the previous period. In mathematical
terms the covariate process is no longer predictable. In the present data set we have
relatively few time points and it is not realistic to use e.g. the diameter increment
during the period between the former two measurements as a covariate.

We define the neighbours in the definition of the CI to be all the trees within a cer-
tain radius and as already noted this is probably not very different from taking the
n nearest neighbours because the trees are placed regularly. The considerations in
Section 3.5 suggest that this radius should be relatively small, but still the choice of
4m is somewhat arbitrary. It would be desirable to estimate this radius from data.
Another idea would be to define several competition indices based on trees in different
distances intervals, e.g. 0-2m, 2-4m, etc. Hegyi [Heg74] also uses a small distance of
10ft, whereas Rathbun and Cressie [RC94] uses a rather large distance of 30m or even
larger in their definition of a CI.

In the analyses we have not worried about border effects. In the border of the plot,
Sitka spruce of the same age and at the same spacing is planted, and we should
somehow correct the competition index near the borders to reflect this. Note that
near the borders the behaviour of the ¢1 would depend on whether we included trees
within a certain radius or we include the n closest trees. I don’t think the question
about border corrections is essential for the validity of the results.

The dependence of the hazard on the x and y coordinates is probably due to the slope
of the ground. It might be that more of the “weak” trees in the low north and west
part of the experiment died before 1975, so that more weak trees are present in the
east and south part. The death of trees in the north and west part of the experiment
can e.g. be caused by more frost in the lower part or differences in the ground water
level.

The general considerations about competition indices in Section 3.5 suggest that a
good competition index is approximately the same as specifying a good model for
the sizes of the trees at a fixed time point. I have not found any references to this
way of thinking of competition indices and it would be worth investigating further.
With examples from forestry Penttinen et al. [PSH92| demonstrates several summary
statistics and graphs in the context of marked point processes that say something
about the spatial distribution of the sizes of trees. See also [WS96] for comments on
the use of usual spatial models in a forestry situation.

In most of the models in [RC94| they treat the trees in three different size classes based
on the diameter. We have not done this here and I suspect that they must do it this
way instead of just looking at the diameters because they are not looking at even aged
stands as I do.

The basic measurement on the trees is the diameter at breast height, dbh. We also use
this measurement as basal area (oc dbh?) and could use it as volume raised to the power
«, dbh®. In a similar way the competition indices could be based on dbh? for a general
(. We found that we should use the dbh measurements and the CI based on the basal
area. In [TB89] they make a growth model and conclude that the competition indices
based on diameters always were superior to those based on basal area. The situation
in Rathbun and Cressie [RC94| is a little different. They investigate an uneven aged
stand and model both germinations, growth and deaths of trees. In the study of deaths
they conclude that the competition from the neighbours does depend on their number
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and distances only, and not the size of those neighbours. In the growth model they also
conclude that a competition index defined on the basis of diameters and the distance
in the same way as mine is the best. So these two references find that competition
indices based on diameters are better than competition indices based on basal area,
which I find the best. I cannot give any explanations for this, but only guess that
it might be due to the different nature of the models; growth models versus survival
model.

It is of interest to make general non linear regression models where we estimate the
parameters « and . This would be relatively straight forward for the o parameter,
but computationally heavy for the 8 parameter since we need to recalculate the cI for
each new value of § in an iterative estimation procedure.

In the definition of the cI we divide by the distance, but could as well divide by
d(s, 5)7. The case y = 2 appears often in physics and Tomé and Burkhart [TB89] tries
this among other variants, but they do not find conclusive evidence on which value of
v to use so they stay with v = 1. In [RC94] they also find the use of v = 1 to be
satisfactory. We could estimate the v parameter in the same way as the § parameter.

An alternative to the non linearity in « is to use log(dbh) as a covariate which would
cause « to enter the model in a linear way.

The growth model by Pukkala [Puk89] models the increment in basal area and not
the increment in dbh. Pukkala concludes that “The main reason for the good degree
of determination is that the models were for basal area growth instead of diameter
growth, and basal area growth correlated very closely with the diameter.”. We could
take dbh) — dbh{_; as the response and again be interested in estimation of §, which
would probably be non trivial.

If we should answer the question “survival of the fattest?” in the title of this report in
a short way, the answer must be yes. It is evident that it is the small trees and the
trees with stronger neighbours that die first.
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A Description of Course

The PhD course in forest biometrics consists of three main parts:

e The reading and discussion of several forest related articles and parts of books.
References are given below.

e Visits to several of the long term field experiments of The Danish Forest and
Landscape Research Institute (FSL).

e This analysis of the data from experiment MBIT.

The first two points were carried out mainly during a one month visit at FSL in Decem-
ber 1996 and January 1997, while the third point was carried out during the period
August 1997 to February 1998.

During the course the following papers and books have been read in addition to the
other papers in the reference list: [Hen81], [Hen88|, [EW95], [Van94|, [Phi%4], [SGW],
[Sko97b], [Sko97al, [Joh96], [TISMT97], [VS97], [STSV95], [Jor94], [OSVIT]|, [STVIS],
[Nes96]|, [RB85].

B The Data in Graphs

This appendix shows graphs of the data. Look in Section 2.3 for comments.
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Species on row and number (no) in row

A 1NN NN AN ANIN NN N NN AN NN IN AN 1NN AN

AN2NNINN 1N 1NNNN 1NN IN NN AN JNNN NN NN AN INN N

NANAN NI 10NN NN 1NN NN I JN NN N

A 1N1NNANANJNN NI IN AN NI JNN AN NN,

NANANINNNINNN 1NN IN 1NN AN NN AN JaN N

A 11NN JNNINININ N NN JN NN N

NA2NJNN NN INII NN IN I NN JNJN N DN

4NN dN AN ANAN 1N NN NN AN AN NN N

NANANAN AN NN AN DI JN 1NN NN AN NN

NANA1 1N 2NN N JNN N NN N JININ NN NI

A 1NN AN NN AN NN AN AN JNNNNIN N AN N I

NANNNINNIIIN A 1NN AN JNNINN NN DN

NANANAN A 1NAN AN AN AN AN NN DN NN DN

AN AN 1NN NNNNJNNIN DN NN NN NN 1NN NN NN JN AN

NONININ NN NN NN IN DD a0

NAd1 10N JNJ1NJNN 1NN JN 0N JNNIN NN NN

AN ANJNNANNINN NN NN NN NN NN AN DN

AN 100N J1 1NN JN 0NN 2NN 1NN JI1NJNINNJII0NN NI

NANANAN 1NN 1NNN AN NN AN AN JNN NN NN 1NN 1NN

N1NN 1NN NN 1NN LN NI N NI I 1NN JNJNNNNNNUN U

NANANNIJaNJNNN AN NN NI 1N NN NN NN NI

A J 10NN INJ1NNN 1NN NN NN JN NN

AN 1NN NNAN NN AN NN NN AN A 1NN NN N JNNNN N,

NA1NINNIN AN INAN D11 1NN NN AN AN INNINNN NN INY

0s or 0e 0¢ 0T

ou

25

20

15

10

row

Sitka spruce,

larch, S—=

Figure 4: Positions in terms of row and number. L

B=Dbirch.

23



Survival of the Fattest?
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Positions of windfall on 24 Nov 1981
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Figure 6: Positions of the fallen trees in the windfall are marked by filled
boxes. Only the positions of Sitka spruce are plotted.
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Positions of Height Trees
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Figure 7: Positions of height trees are marked by filled boxes. Only the
positions of Sitka spruce are plotted.
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Development of diameters, Sitka spruce
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Figure 8: The longitudinal development of diameters.
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Diameters, longitudinal development, random trees, p=10% to be chosen
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Figure 9: The longitudinal development
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of diameters; all trees are shown

exactly once, and they are chosen at random for one of the ten plots.
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Figure 10: Diameters 1975, separated into species.
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Boxplots of Diameters
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Figure 11: Boxplot of diameters. In 1975 only Sitka spruce is included.
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Figure 12: Histograms for the diameters. In 1975 only Sitka spruce is

included.
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1975, diameter of circle proportional to dbh
dead trees small filled circles
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Figure 13: Diameters at positions, 1975. Dead trees are marked with dots
of a fixed size. Only Sitka spruce.
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1979, diameter of circle proportional to dbh
dead trees small filled circles
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Figure 14: Diameters at positions, 1979. Dead trees are marked with dots
of a fixed size.
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1984, diameter of circle proportional to dbh
dead trees small filled circles
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Figure 15: Diameters at positions, 1984. Dead trees are marked with dots
of a fixed size.
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1990, diameter of circle proportional to dbh
dead trees small filled circles
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Figure 16: Diameters at positions, 1990. Dead trees are marked with dots
of a fixed size.
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1995, diameter of circle proportional to dbh
dead trees small filled circles
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Figure 17: Diameters at positions, 1995. Dead trees are marked with dots
of a fixed size.
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1979, diameter of circle prop. to dbh increment
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Figure 18: Map of increments between year 1979 and 1975. Small filled
circles are negative increments, small filled squares are zero increments.
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1984, diameter of circle prop. to dbh increment
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Figure 19: Map of increments between year 1984 and 1979. Small filled
circles are negative increments, small filled squares are zero increments.
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1990, diameter of circle prop. to dbh increment
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Figure 20: Map of increments between year 1990 and 1984. Small filled
circles are negative increments, small filled squares are zero increments.
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1995, diameter of circle prop. to dbh increment
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Figure 21: Map of increments between year 1995 and 1990. Small filled
circles are negative increments, small filled squares are zero increments.
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Increment versus dbh
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Figure 22: Plots of increment versus dbh.
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Height vs. dbh and log(dbh)
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Figure 23: Plot of the heights versus the diameter at breast height, dbh,
in the left column, and log(dbh) in the right column.
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