Perfect simulation of point patterns
from noisy observations

Jens Lund
Department of Mathematics and Physics
Royal Veterinary and Agricultural University, Copenhagen

Elke Thonnes
Department of Statistics,
University of Warwick, Coventry

December 10, 1999

Abstract

The paper is concerned with the Bayesian analysis of point processes whidft are o
served with noise. It is shown how to produce exact samples from therfpysdistri-
bution of the unobserved true point pattern given a noisy obsenvatibe algorithm is
a perfect simulation method which applies dominated Coupling From &ke(EFTP)
to a spatial birth-and-death process. Dominated CFTP is made amenakteutstisig
on an augmented state space. We discuss how to use this perfect simulagiithralg
in a statistical inference problem of pratical importance and describe thtsraed the
limitations of the method.

1 Introduction

Point processes are versatile models for numerous applisatsuch as galaxies in astron-
omy, cell nuclei in cytology or maps of tree locations in firg. Ideally, the data in form
of a mapped point pattern is produced by exact measuremedtthas the point pattern is
observed without noise. For example, in forestry this isoeable if the exact location of
each tree was measured. However, exact measurements trerargpensive method of data
collection. More economical methods are usually availddoie unfortunately, often lead to
noisy data. For instance, aerial photographs are an econsayi of mapping large areas of
forest. Template matching as described in Larsen and RufEshonay then be used to de-
termine possible tree locations even for photographs mddainder off-nadir viewing angles.
However, the irregular shape of tree tops, varying lightditions and motion due to wind
lead to noisy observations of the tree locations. The tetmptaatching procedure therefore
cannot determine the exact locations of the trees. Furtbisermay be introduced by not
observing certain trees or by identifying a tree where tiger®ne.

In mathematical terms, we may describe the mechanism whiobduces noise into our
observations as the combined effect of random and systediafilacements, censoring, thin-
ning and/or superpositioning. Based on these point progpsgations a model which de-
scribes the degradation of our observations can be defised1s2]. Given the noisy obser-
vations together with the true tree locations we may esértiat parameters of the degradation
model. In Dralle and Rudemo [1, 2] such a noise model is useitei@tive least square esti-
mation which also yields a pairing of true and observed pgoibtind and Rudemo [15] derive



the conditional likelihood for the observed process giventrue process. A training set of
true tree locations and their noisy observations is thed imsa deterministic algorithm which
performs approximate maximum likelihood estimation of plaeameters for the disturbance
model.

The conditional likelihood of the observations given theettocations may also be used
within a Bayesian approach, see [14]. Here inference iscthaskely on the observed point
pattern without knowledge of the true tree locations. A pdistribution for the true loca-
tions together with the likelihood of the observations givhe true point pattern yields a
posterior distribution for the true point process given tloésy observations. As common
for many point process models, the posterior distributibthe true tree locations given the
observed locations is not amenable to analytical exanoinatiowever, using Markov Chain
Monte Carlo (MCMC) we may sample the posterior distribut@onl use these samples within
Monte Carlo tests. In [14] a Metropolis-Hastings algoritisuggested whose convergence
is monitored by time series methods. Although these coewesy diagnostics may warn
when convergence has not been reached yet they do not gemamvergence. The problem
of verifying convergence can be solved using perfect sitimrianethods, see [23, 3]. In this
paper we present a perfect simulation algorithm which aléev the exact sampling of the
posterior distribution in [14]. We apply a method calldoiminated Coupling From The Past
see [9, 10, 11, 7] to a spatial birth-and-death process argiioduce an exact sample of the
target posterior distribution.

This posterior distribution specifies a marked point preaglere the mark of each point
influences the distribution of its location. As we do not hawdosed form expression for the
marginal distribution of the unmarked point process notlierconditional distribution of the
marks given the location of the points we cannot first santpdeldcation of the points and
then sample the marks. Thus our method is an illustrationoentb produce exact samples
from marked point process for which the marks cannot be ssargoposteriori.

In the following we first present the disturbance model whsplcifies the relation be-
tween the true and the observed point pattern. This is feltbly a description of the pos-
terior distribution of the true point process (Section 2)ca@xventional simulation algorithm
for this problem based on a spatial birth-and-death proisedescribed in Section 3. Sec-
tion 4 contains an introduction to the perfect simulatiorthnd called Coupling From The
Past (CFTP). We then develop the perfect simulation algoritor our problem in Section 5
and finally present the results thus obtained in Sectiongi&an

2 The posterior model

2.1 The degradation model

We assume that the observations are a degradation of thedintgattern. LeX’ C A denote
the true point pattern in the sampling windovandY C A describe the observed point
pattern. The degradation model is defined through the fatigyoint process operations:

1. Thinning:
Some points of the true pattern are not observed, this is leddesing a thinning
procedure. Each point; € A of the true point pattern is independently thinned with
probability 1 — p(X;) and retained with probability(X;). If a point X; is thinned then
it does not lead to an observation poljte Y.

2. Displacement:
We assume that the position of each tree derived from thalg@rotograph through
template matching suffers from a displacement. This digpteent may be random



or systematic. We model the observed locatignof the true positionX; using a
probability densityk(-|X;) with respect to the Lebesgue measurerdn

3. Censoring:
Some of the displaced locations may fall outside the obsiervavindow in which case
they are not observed. These points are simply censoredridemradation model.
Thus, censoring of the observed location of a true localipwccurs with probability

p(0Y) [ kol Xy,

that is, if a point is retained and displaced outside thembsien windowA.

4. Superposition:
Due to noise the template matching procedure may deteceddcation where there
is actually no tree. These ‘ghost’ points are modelled byndependent superimposed
Poisson process of intensity-| X ).

To specify the above model we make the following distribogiloassumptions.
1. We assume homogeneous thinning, tha(is;) = p.

2. Furthermore, we assume that the superimposed Poissoespris homogeneous and
SOoh(:|X) = «a.

3. Finally, we assume that the displacement follows a 2-dsiomal Normal distribution
N(X; + p, X) wherep = (p1, p2) is the systematic error and

7 _ < 0’% pPoO102 >
pPo102 O'%
is the covariance of the error.

Under the above assumptions the degradation model is tmpletely specified by the
parameter vectdt = (p, «v, ju1, pi2, 01, 02, p).

2.2 The likelihood of the data

For a degradation model as described in the previous settierconditional distribution of
the observed locations given the true locations was deiivdd5]. Consider the process
(Xi,1 € M) of true locations and the proceés;, j € N) of observed positions. To sim-
plify expressions we introduce an auxiliary varialea ‘matching’ which specifies which
observatiory; is caused by which true locatioky;, which observations are ‘ghost’ points and
which true locations are not observed due to thinning oraemg.

Let |I| denote the cardinality of the sét Furthermore, letP(M;, Ni) be the set of
bijections from the finite set/; into the setlV; which is of the same cardinality dd;. Let
M={1,...,m}andN = {1,... ,n} and set

Vm,n = {(MlaNlag) | gep(MlaNl)a Ml gM? Nl gN’ |N1| = |M1|}

We defineV = UX_, U2, Vi, ,, and equipV with the o-algebra consisting of all subsets.
ThenS = (M, Ny, g) € V is a matching and has the following interpretation:

1. The pointX;,i € M is observed a¥ ;).



2. The pointgY}, j € N\N;) are ‘ghost’ points.
3. Due to thinning or censoring, the points;,: € M\ M) are not observed.

Later on we use the shorthand notatiqe) for the index of theY"-point which is matched to
the X-point¢ by the matchings.
As derived in [15] the joint distribution ofY, S) given X = x andf factorizes as

T(y,s|x,0) = Li Ly L3 Ly. (1)
Here the first factor

Ly = p‘Ml‘ H k(yg(l)|xlauvz)a
1€ My

corresponds to retained and displaced locations fallisgdénthe sampling window. The
second factor

o= I [pf kedy+a-p)].
ieM\M, A
derives from locations that were either thinned or retaiewed censored. The third factor
Ly = o™Wlexp((1-a)4l,)
is due to ‘ghost’ points and finally
L = Tiseviy )

is an indicator function which ensures that (M, Ny, g) is a matching for: andy.
The likelihood ofY given(x, #) may be determined by marginalisation:

Liylz,0) = > T(y,s|x,0).
seEV

Unfortunately this sum does not simplify to a more compagehiaic expression. In the
following we will skip any reference t@ in our notation, but assume that it is fixed and
known.

2.3 The prior model

The prior model describes our beliefs about the stochastipepties of the point process
describing the true tree locations. We consider the folhgythree choices.

1. Poisson process:
A Poisson process describes complete spatial randomiegss the absence of any
interaction, whether repulsive or attractive. We may rdgae Poisson process as a
‘non-informative’ prior as it only contains information @it the intensity of the true
tree locations. The density of a homogeneous Poisson mradestensitys with re-
spect to a unit rate, homogeneous Poisson process is given by

f@) = exp((1-p)Al)s"" z C A

Heren(z) is the number of points im and the parametet determines the intensity of
the process as|A|, is the expected number of points of the process.



2. Strauss process:
The Strauss process [25] is a common choice for modellinglseg point patterns. In
our context it is reasonable to assume repulsive interaesahe forest in consideration
was subjected to a thinning experiment. The Strauss prisds$ined by the density

fl@) = cpr@ @) rC A

with respect to a unit rate homogeneous Poisson process. oHere 5 is positive,

0 < v < 1, andc is the normalizing constant. The exponeift:) counts the number of
points in the pattern ands(x) the number of pairs of neighbour points, that is pairs of
points which are less than a distangepart. Notice that the interaction radius in this
point process model is restricted to the distaRce

3. Markov point process with logistic interaction function:
We may assume that the interaction is not restricted to aioeddius but reduces con-
tinuously with increasing distance. This can be modellédgua pairwise interaction
Markov point process with a continuous interaction functid. The density of such a
point process with respect to a unit rate, homogeneousdoB®Ccess is given by

flo) = e [T H(l2i ),
i#]
where||-|| is the Euclidean distance i&f. We consider the logistic interaction function:
1
1+ exp(—¢(r — R))

with slope¢ > 0 and H(R) = 0.5. Note thatH (r) < 1 and so specifies a repulsive
interaction. As the distanceincreasedd () tends to one which means the strength of
repulsion reduces with the increasing distance betweerpbivas.

H(r) =

In the following we will make use of the Papangelou condaibimtensity of the prior
model. For a Markov point process with densjtythe Papangelou conditional intensity is
defined as

f=u{e})
Mo &) = ) for f(x? >0
0 otherwise,

wherez is a point pattern anglis a single point ind. Thus, for a Poisson prior of intensity
we have\(z, £) = (3. For the Strauss process we have

Nz, &) = B9

wheret(z, £) is the number of neighbours ¢fin x. Finally, for a Markov point process with
logistic interaction function we have

M, &) =8 [] H(lz; €l

T;ET

2.4 The posterior density

Our aim now is to sample the joint posterior distribution lué true point procesX and the
matchingS given the observatiop which is defined by the density

m(z,s) = L(z,sly,0) o L(z) T(y,s|=,0) )

HereL(x) is the prior density for the true point process @@, s|x, 6) is defined as in (1).



3 Markov Chain Monte Carlo

To produce samples of Markov point processes with varyinglrar of points two alterna-
tive MCMC methods are commonly used: Metropolis-Hastingsrithms [5, 19] and spatial
birth-and-death processes [21, 18]. A description of a Mumilis-Hastings type algorithm
for the target posterior density in (2) can be found in [14]tHe following we use a spatial
birth-and-death process because its implementation infagbesimulation algorithm is less
intricate than for a Metropolis-Hastings algorithm. Thienested reader may find a descrip-
tion of a perfect Metropolis-Hastings algorithm for logaditable Markov point processes in
[11].

We begin with a short introduction to spatial birth-andttigarocesses and then develop
a spatial birth-and-death process which converges to ogettdistribution.

3.1 Spatial birth-and-death processes

Spatial birth-and-death processes are spatio-tempoiat p@cesses. At any given time the
spatial birth-and-death process forms a point pattern énabservation windowd. This
pattern changes at distinct time instances. The changeeaither abirth, that is a point
is added to the current pattern, odaath that is a point is deleted from the current point
configuration. Since these changes depend only on the tyroém pattern, spatial birth-
and-death processes are continuous-time Markov jump gsese

Spatial birth-and-death processes can be characterisacbbith and a death rate. The
birth rate is a measurable function Q x A — [0, co) such that[, b(z, £)dé < oo for all
bounded Borel subsefs of A. Here the state spac€eis the family of finite point patterns on
A. Given the current configuratianat timet, the probability of a birth inB during the short
time interval[t, ¢ + s) is given bys [ b(z,£)d¢ + o(s).

The death rate is a measurable functibnQ2 x A — [0, c0). Given the current config-
urationz U {¢} at timet, the probability that is deleted during a time intervél, ¢ + s) is
given bys d(z, ) + o(s). Conditions orb andd which ensure the existence and ergodicity of
the spatial birth-and-death process can be found in [21& ra@te of convergence of ergodic
spatial birth-and-death processes is examined in [18].s&riigtion of a simulation procedure
for spatial birth-and-death processes can be found in [24].

A spatial birth-and-death process has invariant distidiutvith density f and is time-
reversible if the detailed balance condition

flx) bz, ) = [flxU{£}) d(z,8) (3)

is satisfied, wherg (x U {£}) is assumed to be positive.

To sample from the target densify often the death rate is chosen at unit rate, that is
d(z,&) = 1, and the birth rate ab(z,&) = A(z,&), which is the Papangelou conditional
intensity of f. The simulation evolves fromfX; = z as follows: generate the waiting time until
the next event as an exponential variate of megtf , b(z,£) d¢ + n(x)). With probability
n(z)/([, bz, &) d¢ + n(x)) the event is the death of a point chosen uniformly among the
points inz, and with probability[, b(z, &) d¢/( [, b(z, &) d€ +n(x)) itis the birth of a point
¢ distributed according to the density which is proportioteed(z, - ).

3.2 The target spatial birth-and-death process

We now determine a birth and a death rate which satisfy thelddtbalance condition given
in (3) for the target density in (2). Essentially, our spatieth-and-death process will consist
of two types of points. The first type of points are so-calfedtchedpoints. These are



locationsz; to which the current matching assigns an observed locatign. The second
type of points areinmatched pointghese are points which did not lead to an observation due
to thinning or displacement outside of the window. Thus tta¢ées of the chain are marked
point patterns. The mark indicates whether a point is unheator matched and in the latter
case it specifies the matched observation point. These raggkgiven by the matching.
Points are born either as matched or unmatched points. Aheooint can only become an
unmatched point if it dies and is reborn as unmatched. Thi®gmas holds for unmatched
points. Changes in the current matchingccur when a matched point is born or dies.
Detailed balance holds if we choose a unit death rate foraiiitp and birth rates as
follows. If the current configuration igz, s) then the birth rate for unmatched points is given

by
(@) @uiehe) = Awop [ Mlod+a-p) @

where\(z, £) is the Papangelou conditional intensity of the prior model.

Let s U s(§) be the matching generated by adding to the existing matchagatching
of the point¢ with an unmatched observed poindf index s(£). The birth rate for matched
points is given by

b( (@s), @ULghsUs©) ) = A0 kwaolO) £ Tnoerug, i ©

for each freey-point. The indicator function in the last expression easuhat a matched
point ¢ is only born if s(£) matches the point to an unmatched observation pgintin
particular matched points can only be born if there is an dohea observation point. The
overall birth rate of a matched poiftcan be derived by marginalisation:

b(a @ULED)) = A@OZ Y kil

JEN\Ny

In the following we useX; = (z, s;) to denote the spatial birth-and-death process with the
above rates. Here, is a finite point pattern ang is the associated matching.

4 Coupling From The Past

Our perfect simulation algorithm is based on dominated Gogjfrom the Past [9, 10, 11, 7],
an extension of the original Coupling From The Past (CFTg)rithm by Propp and Wilson
[23]. We begin with a short introduction to CFTP for finite Mav chains and then present
briefly the ideas of dominated Coupling From The Past. Thisliswed by a section which
develops a dominated Coupling From The Past algorithm feptbsterior density given in

).

4.1 Coupling From The Past for a finite Markov chain

We present the Coupling From The Past algorithm using a sieyample; further details can
be found in [23, 22].
Consider the Markov chaiX” on the integerg1, ... ,4} with transition matrix

0 0 1/2 1/2
0 1/2 1/2 0
1/2 1/2 0 0
/2 1/2 0 0



We may simulate sample pathsX¥fusing a fair coin. Whenever the coin comes up heads the
chain makes one of the following transitions depending erctrrent state of the chain:

1 — 4, 2 = 3 3 = 2 4 — 2
Alternatively, when the coin comes up tails the chain makesaf the transitions:
1 = 3 2 = 2 3 = 1, 4 — 1

Now, suppose we start a path in each of the four initial statessimulate them simultane-
ously using the same coin to€% for the transition at timg in all four paths. In this way we
produce coupled paths df started in all initial states. Observe that from time to titwe
paths meet in the same state. Then these two paths mergey thegaoalesce. We can show
that in almost surely finite time all paths coalesce into amé\&e call this time the time of
complete coalescence.

Coupling From The Past samples the equilibrium distrilbutiaof X using the following
simple, iterative procedure. In iteratidnwe go back to time-2* and perform the following
steps:

1. If ¥ = 1 we toss a fair coin independently twice producing the ratibtesC 5 and
C_;. If kK > 1 we toss a fair coin independentlf—! times yielding coin toss realisa-
ti0n8072k, 072k+1, e ,0721»*7171.

2. If £ > 1 we prepend the new coin toss realisations to the sequenceirotass re-
alisations from the previous iterations, thus obtaining sequence’_,., C'_y. q,
v, Oy

3. We start a path at time2* in each initial state and simulate the paths until time Ogisin
the coin toss realisationS ., C' 914, ... ,C_;. Thus the state of each path at time
—j + 1is determined by the state at timg and coin toss realisatiofi_.

4. At time 0 we check whether all paths are in the same staé,ighf all paths have
coalesced. If so, then their common state is a sample frofhnot, then we perform
another iteration of this algorithm.

Notice the order in which we make use of the coin toss re@issat It is important that
we reuse previously sampled realisations and thabregend any newly sampled ones. Only
then is the output of the algorithm an exact sample from thilibgum distribution. Figure
1 shows an iteration of the above CFTP algorithm in whiches@énce occurs.

Suppose we reach complete coalescence in iterdtibat nevertheless perform another
iteration L, + 1. The reader may check that in iteratidn+ 1 we again obtain complete
coalescence at time 0 and furthermore, the common state gfdiins at time 0 is the same
as the common state at time O in the previous iteration. Tédsis because of the order in
which we construct our coin toss sequence. As complete sweriee is reached in almost
surely finite time,L is also almost surely finite.

Here is a simple proof why the above algorithm works. Suppas@erformk iterations
of the above procedure. Now consider thk iteration. Lett”(*) denote the state at time 0 of
the path started in state 1. Th&#*) has the distributiorP™ (1, -), whereN = 2* and PN
is the N-step transition matrix. Due to the ergodicity &f we know thatP™ (1,-) — 7 as
N — co. At the same time we know thaf®*) = V() for k > L, whereL is defined as
above. It follows that” (") has distributionr.

The example illustrates the basic steps of CFTP:

1. Sample the randomness needed to simulate the targetfabraitime —1" to time 0.
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Figure 1: A CFTP iteration in which the coupled sample path& chave co-
alesced by time 0. We use the notatifinfor heads and” for tails. Observe
the anti-monotonicity of the transitions. The dotted lisksw the minimal and
the maximal path. Complete coalescence is achieved at &melewever, we
continue to simulate up to time O.

2. Start a path of the target chain in each initial state amdilsite them till time 0 using
the sampled randomness.

3. Check whether complete coalescence has been achievall.p#iths have coalesced
into one, then their common state at time 0 is a perfect sample

4. If coalescence has not been achieved yet, go backwardsdarii —7" — S and sample
the randomness needed to simulate paths from tiffie- S to time —T'. Prepend the
newly sampled randomness to the previously sampled rangssraend proceed with
step 2.

When developing a CFTP algorithm it may be helpful to thinkeérms of the following
heuristic. Suppose we could start the chdimt time—oo and simulate it up to time 0. Then,
due to the ergodicity ok, the heuristic suggests that the state of the infinite timeuksition at
time 0 has the equilibrium distribution. Now consider ttb iteration of the CFTP algorithm.
We assume that the randomness used in this iteration (ixaon@eC'_,x, ..., C_;) is also
used in the final* transitions of the infinite time simulation. Suppose thailescence is
achieved in thekth iteration. As the infinite time simulation has to be in origh® initial
states at time-2*, at time 0 it has to be in the common state which the coalesatt pake
at time 0.

For large state spaces monitoring the coalescence of gattexkin all initial states will be
prohibitively expensive. However, it may be possible tostarct two paths, we call them the
minimal and the maximal path, which do not neccessarilyvaatcording to the dynamics of
the target chain but which sandwich between them the padhiedgtin all initial states. Thus
coalescence of these two paths implies complete coalesodiice paths started in all initial
states. Let us return to our example on the integérs, 3, 4}. Supposef (z, C') describes the
state we reach if we make a transition from statcording to the coin tosS. The function
f together with the random variabie is called a transition rule. Close inspection shows that
f is montone decreasing (or anti-monotone) in its first argumehis fact can be exploited
to monitor coalescence efficiently using a maximal chainanunimal chain as follows. In
the kth iteration we set the initial states as

max = 4 and mro= 1

and then evolve the two paths till time 0 using the rule

M= f(XTRCL)  and  XTH, = fXTLCL).



Thus the minimal and the maximal chain evolve as a two-compbghain in which the
updates of the one component are made according to the tooefiguration of the other
component. We call this construction, which was first usefiLdj and further examined
in [6], a cross-over In Figure 1 the reader can see how the minimal and the maxpatal
sandwich between them the paths started from all initiaésta

4.2 Dominated Coupling From The Past

Foss and Tweedie [4] showed that the existence of a CFTPithigoas developed in [23]
which produces output in almost surely finite time is eqnalto the Markov chain being
uniformly ergodic. However, many Markov chains of inter@siparticular many spatial birth-
and-death processes, are not uniformly but only geoméyriesgodic. We may still be able
to produce perfect samples from such chains, but we will neetge an extension of CFTP
which is calleddominated Coupling From The Pamt Coupling Into And From The Pasiee
[9, 10, 11, 7].

In terms of the heuristic of an infinite time simulation doatied Coupling From The
Past is based on the following idea. Suppose we can find rahdoimds on the state which
the infinite time simulation takes at any fixed time. Now, sayime —2* we start coupled
paths of the target chain in all the initial states which aithiw the random bounds at that
time. We then evolve these paths till time 0 using the saméammmess as the infinite time
simulation. Suppose these paths have coalesced into dnmeed,tthen our heuristic suggests
that their common state at time O is also the state of the iaftime simulation and thus has
the equilibrium distribution.

For spatial birth-and-death processes we have a naturat loeund, the empty set. Up-
per random bounds can be found by constructing a spati@lairti-death proced3 which
stochastically dominates the target chairso that given a path adb we can produce a path
of X which at any time is bounded above ). We can easily find such a proceBsby
choosing a spatial birth-and-death process with the sara date asX but a higher birth
rate. We can then produce a pathXffrom a path ofD by censoring some of the births in
D. The following section will describe this construction irora detail for the target chain in
Section 3.2.

Perfect simulation for locally stable point processes &used in [11]. Our method
shows how to produce samples of marked point processes fohvtlis not possible first to
produce a perfect sample of the unmarked process and thamigesthe marks. Our paper
carefully describes an implementation of dominated Cogpkrom The Past for a marked
point process such that the algorithm samples the jointilliston of points and marks.

5 Perfect simulation of the posterior density

5.1 The dominating process

Recall that the target spatial birth-and-death procésdss two types of points, matched and
unmatched. Both types have unit death rates and their Eitds rare given in (4) and (5).
Similar to X the dominating procesB is a spatial birth-and-death process whose states are
marked point pattern&, ¢). Like X it consists of matched and unmatched points. Both types
of points have unit death rates in. The birth rates oD, however, are higher than iK. Let

A* = sup, ¢ A(z, ) wherel(z, ) is the Papangelou conditional intensity of our prior model.
For all three prior modela* is well defined as all processes are locally stable, thateis th
Papangelou conditional intensity is uniformly bounded.

10



Unmatched points iD have a birth rate given by

(. Guteha) = X o[ kwow +a-p] = X fE

Thus the unmatched point component/informs a time-reversible spatial birth-and-death
process whose stationary distribution is an inhomogen&misson process with intensity
measure\* f(£). We may sample the stationary distribution by sampling atppattern
z according to a homogeneous Poisson process of inteAsignd then retaining a point
¢ € z with probability p [,. k(y|¢)dy + (1 — p). This can be done by marking each point
¢ with a uniform (0, 1) markU (¢) and a point; sampled fromk(-|¢) and then retaining if
U <l—porifU(§) >1—pandn ¢ A. By sampling the point we avoid the calculation
of the integralf ,. k(y|£)dy. However, the integral is close to zero and tiidisf (¢) is close
to \* (1—p). As this is much smaller thaki* many points are thinned. Fortunately, we found
that this had only a very negligible effect on the speed ofabgorithm.

In the following we use an auxiliary variablg which assigns to each matched point in
D an observational poing; € Y. However, we do not require th& is a matching, that
is Q may assign more than one matched point to the same obsealafioint. Thus the
dominating process lives on a state space which is an augtimnof the state space of.
We will motivate later why we do not restri@ to be a matching. We cad) an ‘assignment’
to contrast it from a matching. Matched pointsiirhave a birth rate which is defined by

bo( (20, (2U{EhaUal©) ) = N 2 hlygelé),

wheregq is an assignment. The overall birth rate of a matched oint D is obtained by
marginalisation:

bo( =z 200eh) = IS R@lo = A Zae.
JEN

Thus, the matched point component is a time-reversibléaditth-and-death process whose
stationary distribution is an inhomogeneous Poisson geoath intensity measute pa—'h(€).
The stationary distribution of the matched points thus majnkerpreted as a cluster process
with the observation points as the cluster centres. Theerlasoundy; has a Poisson num-
ber of daughters with meakipa~" [ 41 k(yj1€)d¢ and the daughters are scattered according
to a Normal distribution around the cluster centers. So topsa the stationary distribution
we sample for each observation poipta Poisson number of daughters with medpa !
normally distributed around the observation point with mga— . and covariances. We
then censor any of these daughters that fall outside thenatigms window. Finally, the
assignment then marks each point in the cluster patterntiadgtindex of its parent point.

As the stationary distributions of both of the two composeuit D are easy to sample
we can simulatéD in equilibrium. Moreover, if we starD in equilibrium we may produce a
path of D on a time interva[—T', 0] by simulatingD on [0, 7] and then simply reversing the
path in time. This also provides us with an easy way of extendigiven path oD on a time
interval [T, 0] to a path orj—7" — S, 0]. We just simulateD from time T" forwards till time
T + S and then reverse the path in time.

5.2 The target chain

We may derive a path of the target chaihfrom a path ofD on a time interval—T', 0] as
follows. We first mark each birth timeof D with a mark4; which is uniform on the unit
interval. Attime—T" we startX in the empty set. Then we evolVé from time —T' to time
0 in synchrony withD according to the following rules:
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1. Whenever we have a birth of an unmatched pgiimt D, we check whether the mark
M, of this birth timet satisfies

A(th ) f)
> N )

where X;_ is the configuration ofX immediately prior to time. If the above is sat-
isfied, then the unmatched poifiis also born inX at time¢. Otherwise, there is no
transition inX at timet.

M,

2. Suppose at timé we have the birth of a matched poifiin D which is assigned to
observation poing, ). Then we check whether the mavk; of this birth timet satisfies

A(th ) f)
— A* -
We furthermore check whether the observation pgjpt) is not matched inX;_. If

both conditions are satisfied, then the matched piathich is matched witiyq@), is
born in X at timet¢. Otherwise no transition takes placeXnat timet.

M,

3. Finally, consider a death timeof D. Here we simply check whether the pofntvhose
death time ig is in X;_. If so, it dies inX at timet. OtherwiseX does not change at
timet.

Note that we also could have evolved according to the above set of rules if it had
started in any admissable subset of the configuratioP» at time —7". We call the marked
point pattern(z, s) a subset of the marked point pattéen q) if

1. the unmatched points (i, s) are a subset of the unmatched point$:ry),
2. the matched points ifx, s) are a subset of the matched pointging),

3. any point in(z, s) that according tos is assigned to the observation poiptis also
assigned tg; by q.

We call (z, s) an admissable subset 6f, q) if s is a matching, that is it assigns at most
one point to any observation point. Note that any subset cdidmissable subset is also
admissable. We denote the subset relation for marked paftdrp byC and the admissable
subset relation by.

If we evolve X as above, then marginally it behaves like a spatial birth-@eath process
with unit death rates and the following birth rates. Unmatthoints are born at rate

(o) wUEhe)) = N [ [ ko +0-p)] x X5

which is identical to the rate given in (4). Matched pointshia above construction are born
at arate

Az, §)

W Lsus(©)eViauger vl

b( (2,9), (@U{hsUs() ) = A Lh(yyglé) x

which is the same rate as in (5). Notice that if we only permé& matched point per observa-
tion point in D andD is currently in statéz, ¢), thenX would have birth rate

p
o Az, &) k(y5(6)|£) H[QUS(ﬁ)GV\zu{g}\,\yﬂ ]I[sUS(ﬁ)GV]mu{g}\,\y\]

p
= E A(xaf) k(ys(§)|£) ]I[qu(ﬁ)EV]zU{é}‘,‘yﬂ'
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However this does not coincide with the target birth rate5n (This is because we assume
the configurationX; = (z, s) to be an admissable subsetf = (z,¢). Thus the number
of unmatched observation points (m, s) is higher than in(z, ¢) and so the restriction on
s U s(&) to be a matching is less stringent than the onedhat(¢) is a matching.

Suppose that at time T the chainX is started in an admissable subset of the configura-
tion D_7. Then points inX are only born if they are born i and points which die irD
also die inX and so the configuration of at any timet > —T is also an admissable subset
of Dj.

In order to get the intuition on how to samptein equilibrium using dominated Coupling
From The Past consider again the heuristic of an infinite S8immaulation of X. Suppose the
infinite time simulation ofX is derived from an infinite time simulation dP. Then the
configuration of the infinite time simulation of is at any time an admissable subset of
the current configuration of the infinite time simulation ©f If we sample a path oD
in equilbrium on the time intervgT, 0] then we heuristically may interpret this path as a
realisation of the infinite time simulation @. But then, if we start a path of at time—T'in
every admissable subset of the configuratidny and they all coalesce by time 0 then their
common state at time 0 is the state of the infinite time sinanadf X at time 0 and thus has
the target equilibrium distribution. Of course, this istjasheuristic; a formal proof follows
in Section 5.4.

It would be rather expensive to start a path¥fat time—T' in every admissable subset
of D_p. Instead, similar to the finite state space case, we will ttocisa minimal and a
maximal path whose coalescence implies the complete asaies of the paths started in
every admissable subset Bfat the starting time.

5.3 The maximal and the minimal process

Consider the acceptance rules for birthsXn For unmatched points we check whether
MMy < Az, €). Clearly, the larger the Papangelou conditional intensity, £) of the prior
model the easier it is to satisfy this condition. But for ad3on prior or a repulsive process
like our other two prior models we havézx, £) > \(z, &) if z C z. Thus the acceptance rule
for unmatched points is anti-monotone, that is the smallgith respect to the subset relation
the more likely it is that a birth of an unmatched pdiris accepted.

For matched points we check two conditions when decidingtigrgo accept a birth in
X. The first condition is the same as the condition for unmatgimnts and therefore anti-
monotone. For the second condition consider two configamafix, s) and(z, ¢) of X where
the first is a subset of the latter. Nowsif¢) = ¢(¢) then

Lsus©eViogey il 2 Tava(©)eVieugey, ol

because the unmatched observation points:js) are a superset of the unmatched observa-
tion points in(z, g). It follows that the acceptance rule for births of matchethisois also
anti-monotone.

Because the acceptance rules for births are anti-monotemesan use a cross-over to
define a maximal and a minimal chain. Suppose we have a sgfisaalisation ofD on
[—T,0]. Then we produce a realisation of the minimal and the maxahain as follows. Let
X max(—T) gnd xmin(-T) denote the maximal respectively the minimal chain starteifre
—T. We set

xmxT — p, and  xmECD =

We then evolve the two chains as follows.
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1. Whenever we have a birth of an unmatched pgiimt D, we check whether the mark
M, of this birth timet satisfies

A(th'lia’X(fT) ’ é-)

Mt S \* )

in which case is born at time in X™2x(=T) gand x™in(=T) |f the above condition is
not satisfied we check whether

MY )

A* '
Note that this is a less stringent condition. If it holds thie@munmatched point is born at
time ¢ only in X™2x(=T)_ The minimal process does not have a transition. If therlatte

condition is not satisfied then neither the maximal processtime minimal process
change at time.

M, <

2. Suppose that at timewe have the birth of a matched poiin D which is assigned to
the observation poinj, ). We first check whether

AT )
M o< = 7
t = e
and furthermore whether the observation pajpt is not matched inXﬁaX(_T). If
both conditions are satisfied then the matched goigtborn at time both in the max-
imal and the minimal chain where it is matchedytg.). If not both of the conditions

are satisfied then we check whether

and, moreover, whether the observation pgjjt, is not matched id(ffn(_T). If these

two conditions are satisfied, then the unmatched goistborn in the maximal path at
time ¢ but not in the minimal path. Note that this procedure alldwesrnaximal path to
have several matched points which are assigned to the sasmevation point. If one
or two of the latter two conditions are not satisfied no trémsitakes place at timein
either the maximal or the minimal chain.

3. Finally, consider a death timeof D. Here we simply check whether the pofntvhose
death time ig is in the maximal respectively the minimal path. Then thenpgidies
in either path subject to its existence.

As mentioned before, the maximal process like the domigatirain can have more than one
matched point for a given observation point. This is moédaby the following. We would
like the configuration of the maximal process to be a supefdbe configurations of all paths
of X started in an admissable subsetlofind evolved according t®. Depending on their
initial configuration these paths will have a point matched particular observation point at
different times and these times may overlap. Thus the uniail the configurations of all
these paths at a given time may contain more than one matdieidper observation point.
This is why we also allow such configurations in the maximakpss. The minimal process,
however, has only ever one matched point for any observatiant.

The above construction of the minimal and the maximal poesesures that

min(—T max(—T
X (=7) C Xt ax(—T)

¢ C Dy forall t € [-T,0]. (6)
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This follows from the fact that transitions in the minimaldatie maximal chain are a subset
of transitions inD, and, moreover, that births i are more often censored K;™"""” than
in X;nax(_T).

Given a realisation oD on [T — S, 0] the maximal and the minimal process have the
following funneling property [8]:

TS ¢ xmaxCTES) o xmax D) gorallt e [-T,0). (7)

Xtmin(fT) C inin(

The above statement clearly holds foe —T" as

~T-5) (-T-5)

poc o xmin c XM C Do

min

Moreover, if X,
rule for births, a birth is more often accepted A" than in x™™

(=T) C Xﬁin(_T_S ) then, due to the anti-monotonicity of the acceptance
9 simi-

larly if X™**CT) 5 x™xT79) then a birth is less often accepted F™™") than in
X{”‘“(_T_S ) and so births preserve the ordering between the four presess a death of a

point in D induces the death of the point in any of the four processeedio its existence
it follows that deaths also preserve the partial orderindysmstatement (7) holds.

The construction of the maximal and the minimal process ¢h ¢bat once their paths
meet they remain identical, that is if

T)

inin(f _ X;nax(fT)

for somet € [T, 0]
then
X,Tin(_T) _ Xglax(—T) for all u € [¢,0].

Notice that because the minimal path is always in an admissaloset of the dominating
chain, the maximal path also has to be in an admissable swisgt it coalesces with the
minimal path. Once the two paths coalesce the evolutiontagri®n for the minimal and
the maximal process reduces to the same construction asiiois&.2 and so the two pro-
cesses then have the same birth and death rates as the taigetA sufficient condition for

x0T and X to coincide is thaD; = (. Define the coalescence tirffe: as
Te = min{T>0: Xy = xyratTh

then it follows thatT- < Tp whereTp = min{t > 0: D_;, = 0}. AsTp is almost surely
finite it follows thatT¢ is also almost surely finite. In practic€ is usually much smaller
thanTp.

Our aim in constructing the minimal and the maximal proceas t@ enable the efficient
monitoring of the paths of the target chain started at tin¥#e in all admissable subsets of
D_7 and evolved in accordance o as described in Section 5.2. Thus we have to make sure
that the paths of the minimal and the maximal process stattdohe —7" sandwich between
them all the relevant paths of the target chain. Ket’ be the path the target chain started in
state(z, s) < D_p. Then

T Xm;n(—T) C X_%ﬂ C Xm;x(—T) — D_p.

Now observe that if
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then
AXTED gy > A(X;_T,&) > AT g,

Moreover, the free observation pomtsfﬁj" )area superset of the free observation points

in X, T which themselves are a superset of thosﬁj’ﬁ By examining the acceptance
rule for births we deduce that any point that is born in théhpdtthe target chain is also
born in the path of the maximal process and any point thatris vothe path of the minimal
process is also born in the path of the target chain. Thusati@pordering between the three
processes is preserved by any transition and the followangwiching property holds

X;nin(—T) C Xt_T C X;nax(—T) . (8)

5.4 The perfect simulation algorithm

The perfect simulation algorithm now works as follows. Wagiate a stationary version of
D on[-T,0]. Then we simulate the maximal and the minimal process asitleddn Section

5.3 and check whether their states at time 0 coincide. If saxaturn their common state as a
sample from the equilibrium distribution. If not we exteie sstationary path ab on [T, 0]

to a stationary path op-7' — S, 0]. Again, we simulate the maximal and the minimal process,
now on the time intervgl-7 — S, 0], and check for coalescence. We proceed in this iterative
manner until the minimal and the maximal path have coaleaté&the 0 and then return their
common state as a sample from the target posterior dengtalRhat

Te = min{T>0: Xy = xratTh

is almost surely finite and so we deduce that the above proegutaduces output in almost
surely finite time wherp' is uniformly (across iterations) bounded away from zero.
Usually a doubling strategy as described in [23] is useds Tieans that the timg& by
which we extend the dominating chain backwards in time irhateration is equal to the
time T' already gone back. We have also adopted the doubling stratemur algorithm. A
complete pseudo-code description for the CFTP algorithmbesfound in Appendix A.

Theorem 5.1 The constructed CFTP algorithm produces exact samplesqidkterior den-
sity given in (2).

The following proof is a special case of the proof in [11, Tieso 3.1].
Proof: We know thatT is almost surely finite and so the limit dﬁfmax( )
exists. Note that due to the funneling property (7) we knoat th

asT — oo

T x(=T x(—=T¢o
lim xpnCh = iy xpe D o xpa(=To),
—00 T—o0

SupposeX ~7 denotes a path of the target chain started at tirflein the empty set and
evolved coupled td. Then the sandwiching property (8) ensures that

lim X7 = lim xpCD = xpad=To),
T—o0 T—o0

Now suppose we start the target chairat time0 in the empty set and evolve it forwards till
time 7 when it is in stateXr. ThenZ(X7) = £L(X; "), where£(Y") denotes the distribution
of Y. The ergodicity ofX implies that

. _T . . .
Jm L(X") = lim L(X7) =

wherer is the target posterior distribution as given in (2). It dolls thatX(r)“aX(_T(’) =
limp_,0 X, © has the equilibrium distribution. O
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6 The observed point process obtained from template matching

The data analysed originate from aerial photographs of ranitgy experiment of Norway
spruce Picea abieqL.) Karst.), see [1, 2] for detailed descriptions of the exment and
image acquisition. The observed point prockss- (Y7,...,Y,) with n = 206 points was
obtained by template matching [13]. This data set togethtir the ‘true’ tree top positions
X = (Xy,..., X)) with m = 171 was analysed in [15] with focus on the conditional
likelihood L(Y'|X). In the present paper we study the posterior distributioX” afiven the
observation oft”. We assume the knowledge of the prior distributionXofind of the condi-
tional likelihood (Y| X') but not of the true positions of th&-points. TheX - andY -points
are shown in Figure 2.

500 — O 171 true’ tree tops

« 206 candidates

400 —

300+

200

100 —

Figure 2: 171X -points (centres of circles) corresponding to ‘true’ trepst and
206 Y -points (dots) corresponding to template matching. The af¢he delin-
eated subplot is 4 454 Tnand the unit of the axes is linear pixel size, 0.15 m.
In the practical calculations we have used the convex bdatetonvenience,
and have thus increased the area Witt2% to 164314.8 pixels from160898.5
pixels. This increase is mainly in the lower left corner.

The analysis in [15] yielded the parameter estimates suimathin Table 1 which we
used to specify the conditional likelihodd'Y"|X') in this paper.

Lund et al. [14] analyse the unobserved point pattéfnusing a conventional forward
Metropolis-Hastings sampler. Besides a thorough Bayesiaitysis the authors also provide
a discussion of the choice of the prior.
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0 ‘ P « 141 149 o? o3 0102p

EStimate‘ 0.941 0.0002745 —0.342 0.0815 1.047 2.028 —0.0489

Table 1: Parameter vectér= (p, a, u1, 12, 03, 05, p) used in the analysis.

7 Discussion

In the present paper we have shown an example of how to praskaot samples of a marked
Markov point process whose marks cannot be sampled a pwstérhis means that it is not
possible to sample first the unmarked point process and gudsty the marks.

As an example, Figure 3 shows a perfect sample from the parsthistribution where
the prior has a logistic interaction function with the paetenss|A|; = 175, R = —3 and
¢ = 0.462. This results ind (—3) = 0.5 andH (0) = 0.8. This simulation took 72 minutes
to produce output.

A perfect simulation

O 171 'true’ tree tops
206 candidates
X 173 sim X points (164 matched)

500
|

400
|

300
|

200
|

100
|

Figure 3: A perfect sample from the posterior distributiomene the prior
distribution has a logistic interaction function with paretersg|Al; = 175,
H(-3)=0.5, R=—-3,andH(0) = 0.8.

Our algorithm uses dominated Coupling From The Past applieal spatial birth-and-
death process. A dominating process is constructed by antgqrgethe state space of the
target chain. As an illustration of the CFTP algorithm ougute 4 shows the number of
points in the dominating chain as well as in the maximal artiénminimal processes.

Given a perfect sample of the posterior distribution we mawy continue to perform a
full Bayesian analysis similar to Luret al.[14]. Thus our algorithm is an illustration of how
to use CFTP in a real life statistical inference problem. ¢dtber examples see [20, 16, 17].
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Number of X points

800

600

400

200

CFTP

390550 transitions in D from time —128 to 128

— 215975 proposed events in D from 0 to 128
195037 transitions in D from 0 to 128
44102 transitions in X from 0 to 128

I T T T TTOmT T T T T T
-128 -64 -32 -16 -4 4 16 32 64 128

Simulation time

Figure 4. The number of points in the dominating chain, anthenupper and
lower processes. The dominating chain and the target cheaicamtinued for-
wards from time 0. We see that the coalescence fimé between 64 and 128.
The figure specifies the number of transitions of some of tllespshown. The

number of “proposed events” iR includes for instance proposals of unmatched

X-points that are not added to the dominating chain. The numigansitions
counts the number of times a path changes it configuration.
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We would have liked to use our CFTP algorithm for priors whie same parameters as
in [14]. Unfortunately, our algorithm turned out to be toowlto be useful for the priors
in [14] as the current implementation produces samplesdaamable time only for less re-
pulsive priors. For instance, a logistic prior with paraenst?|A|; = 530, H(0) = 0.05, and
R = 15, which has much stronger repulsion than the one used foréBuvas used in [14].
The reason why our algorithm does not produce output in redde time for such a prior is
as follows. With this more repulsive prior the numberX6fpoints attached to eadi-point
in the dominating chain has a mearrof\*pa ! = 11.1. This causes the difference between
the dominating chain and the target chain to become so lagjecbalescence of the CFTP
algorithm is not achieved in reasonable time. In order ferdpper and lower processes to
coalesce we have to add points in the minimal process antedeled not re-add) points in
the maximal process. However, as long as the lower procesghs empty set most of the
points proposed by the dominating chain are added to ther ygpeess. On the other hand,
it is very difficult to add points to the lower process becatlmeupper process (still similar
to the dominating process) contains far too many pointstp@iompared to the desired target
density. Specifically, & -point has to have no associat&dpoints in the upper chain in order
to add a matched point in the lower process. If the mean nuaiberatched points in the
dominating chain peF -point is 11, then the probability of having 0 match&dpoints is as
small asl.67 x 10~°.

Typically, if we use a prior that is more repulsive than the arsed for Figure 3 and
Figure 4 we observe that the minimal and the maximal progggach each other quickly.
However, after an initial “burn in” period they do not get acipser but rather behave like
stationary processes at certain distinct levels.

Van Zwet [26] in collaboration with Van Lieshout developetiterative CFTP algorithm
which samples a conditional Boolean model and is more efficlean the analogous algo-
rithm developed in [12]. We have investigated whether simitleas could be used in our
setting. Unfortunately, we found that the method was notreabhke to Markov point pro-
cesses.

The main cause of the inefficiency of our algorithm is that Wenathe dominating pro-
cess to have multiple matched points for each observationt. p@/e suspect that the num-
ber of matched points per observation point may be reducaeusing previously sampled
matched points. We are planning to investigate this in &utesearch.

Acknowledgement:
Elke Thonnes gratefully acknowledges the support by the BARThetwork ERB-FMRX-
CT96-0096 and the Stochastic Centre at Chalmers University

A Appendix: Pseudo-code for the algorithm

This appendix describes the perfect simulation algorithmietailed pseudo-code.

A.1 Dominating process

We give a pseudocode description of how to simulate the datimip process given the pa-
rameterd = (p, o, p1, 2,07, 05, p) and the noisy observatiori = 3. We start simulating
at time 0 and simulate backwards in time till tired". The first step is to simulate the initial
pattern and the associated birth times. The types a matched point, the typestands for
an unmatched point. Furthermore we wilitdl for the area ofA and setV = {1,... ,n}.

20



Comments within the program are marked with the sign %. Indlgerithm the realisa-
tion of the dominating process is specified by a multi-dinemed variable composed of
D.type, D.loc, D.life, D.birth coding the type, location, life time and birth time of each
point. The variableD.s specifies the matched observation point, where approprigaeh
birth time is marked withD.mark. Poi sson( a) produces a Poisson variable of mean
andExponent i al (@) produces an exponential variable of ratéhat is of meam—'. Fi-
nally, the procedur&or mal ( z) produces a point which is normal with mean- x and

covariancexr.

Algorithm (1)

Initial (A\]Alg,0,y, seed):
set. seed(seed)
% Ilnitial matched and total nunber of points
M;(0) ~ Poi sson(n\*pa~!)
M(0) ~ Poi sson(A*|A|q)
M(0) < M(0) + M;(0)

% Mar ks,

| ocations, life- and birth-times of initial points.

for i=1 to M;(0)

D.type(i) < m

D.s(i) ~ Uni formN)

D.loc(i) ~ Nor mal (yp_())

D.life(i) ~ Exponenti al (1)

D.birth(i) < —D.life

D.mark(i) ~ Uni f or m([0,1])

i f D.oc(i) ¢ A, then delete this point.

for i=M;(0)+1 to M(0)
¢~ UniformA)
g ~ Uni for mJo,1])
z ~ Normal (£) +2u
it (g<-p) or ((g>1-p) and (¢ 4))
then D.type(i) + u
D.loc(i) + &
D.life(i) ~ Exponenti al (1)
D.birth(i) < —D.life
D.mark(i) ~ Uni f or m([0,1])
return(D)

The algorithmD- Ext end may be used to extend an existing simulationZbbn [0, —T']
backwards until some timeT" — S. Specifically, you may call it with" = 0 and the
initial patterns produced as above. The varidblent 1 records the next death time of an
unmatched point, the variable/ent 2 records the next death time of a matched point. The
birth time is then the death time minus the exponentialififet The variablenext Event is
the waiting time between two successive death events.

Algorithm (2)

D- Ext end( \*|Al4,0,y,T, S, D, Event 1, Event 2) :
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% Evol uti on of unnatched points
i< highest index in D
event « Eventl

whi | e ( event >—T—S>
1+ 1+1
¢~ UniformA)
g ~ Uni for mJo,1])
z ~ Normal (£)+2u

it (g<-p) or ((4>1-p) and (= ¢ 4))
then D.type(i) < u
D.loc(i) + &
D.life(i) ~ Exponenti al (1)
D.birth(i) < event —D.life(i)
D.mark(i) ~ Uni f or m0.1])
next Event ~ Exponenti al (\*|A4]q)
event <« event - nextEvent
Event1l + event
% Evol uti on of matched points
event + Event2
whi | e ( event >—T—S>
t+—1+1
D.type(i) < m
D.life(i) ~ Exponenti al (1)
D.birth(i) < event —D.life(i)
D.s(i) ~ Uni form)
D.loc(i) ~ Nor mal (yp (i)
D.mark(i) ~ Uni f or m([0,1])
if D.oc(i) ¢ A, then delete this point.
next Event ~ Exponential (n X\ pa 1)
event <« event - nextEvent
Event 2 « event
return(D, Event 1, Event 2)

A.2 The target chain

In the following we present an algorithm which produces ¢isation of the target chain from
a realisation of the dominating process. Thus the targehdban adapted functional of the
dominating process. For the following algorithm we assuna¢ Wwe have a realisation of the
dominating proces® on the time-interval—T', 0]. The realisation is coded in an ordered list
ofevents—T < t; <ty < ... < t, <0. Foreach event; we know whether it is a birth or a
death and which poirit of D it concerns, that is we know

D(k) = (D.type(k),D.loc(k),D.life(k),D.birth(k),D.mark(k),D.s(k)).

The target chain is started in the empty pattern.

Algorithm (3)
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X- Evol ve( D) :
% Derives a realisation of X froma realisation of D
X<«0
for i=1ton

i £ (t: = Dbirth(k))
i f (D-type(k) = U> and (D.mark < M)
then X « X UD(k)
i f (D.type(k) :m) and (D,mark < M)
and (D.s(k) is index of unmatched y-point in X )
then X < X UD(k)
i f (ti — D.birth(k) —|-D.life(k)> and (D(k) c X)
then X < X\D(k)
return(X)

The algorithmX- Evol ve is not directly used in the perfect simulation algorithmt isu
described here for completeness.

A.3 The minimal and the maximal process

Here are the algorithm for the minimal and the maximal preagkich are evolved accord-
ing to a cross-over because we have a repulsive prior ditisih Coalescence of the two
processes means that we can accept their common state & éisne@n exact sample.

Algorithm (4)
M nMax- Evol ve( D,\*):
% Produces a realisation of the mniml and maxi mal
% process froma realisation of D
MIN <« ()
MAX « configuration of D at tinme -T
for i=1ton

i £ (t;=Dbirth(k)) and (D.type(k) = u)
i f (D.mark < w
then MIN + MIN UD(k) and MAX + MAX U D(k)
else if (D.mark < w)
then MAX < MAX UD(k)

i £ (t:= Dbirth(k)) and (D.type(k) =m)
i f (D.markg w> and (D.s(k) free in MAX )
then MIN + MIN UD(k) and MAX + MAX U D(k)
else if (D.markﬁ%) and (D.s(k) free in MIN )
then MAX « MAX U D(k)

i f (ti — D.birth(k) + D.li fe(k))
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it (D(k) e MIN) then MIN « MIN\D(k)

if (D) e MAX) then MAX + MAX\D(k)
return( MIN,MAX)

A.4 The CFTP algorithm

Algorithm (5)

CFTP( \*,0,y, seed):
coal escence + FALSE
T+0
M|Alg - M4
D« Initial (M\|A]g,0,y, seed)
Event 1 ~ Exponenti al (\|A]g)
Event2 ~ Exponential (n X\ pa 1)
Eventl < - Eventl
Event2 « - Event2

whil e ( coal escence = FALSE )
S « max(T, 1)
(D,Event 1, Event 2) «+ D- Ext end(\*|Aly4,60,y,T,S,D,Event 1, Event 2)
(MIN,MAX) + M nMax- Evol ve(D, \*)
T+T+S

i f (MIN:MAX) t hen coal escence + TRUE
return( MIN)
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