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Abstract

A Bayesian analysis of point patterns degraded by thinning, random displace-
ment and superposition of ‘ghost’ points is suggested. Pairwise interaction Gibbs
point processes are used as prior models for the unobserved true point pattern,
and a Metropolis-Hastings type algorithm is constructed for simulation from the
posterior distribution of the unobserved point pattern and associated informa-
tion. The simulations are used for estimation of statistical summaries such as
the K-function, the nearest neighbour distribution function and the empty space
statistic for the underlying point pattern. Analysis of degraded point patterns is
relevant in a variety of situations with indirect observations or inverse problems
in e.g. high level image analysis. We illustrate the method by a forestry example
where tree maps are constructed from aerial photographs and the observed tree

positions are disturbed by the image analysis process.
Keywords: point process, noise, disturbance, Gibbs process, Bayesian analysis.

Running headline: Analysis of noisy point patterns

1 Introduction

Statistical analysis of point patterns is typically based on observations of positions

{Y;,7 =1,...,n} of objects observed within a sampling window. The only commonly
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1 Introduction

applied correction is for edge effects caused by the unobserved objects which are outside
the sampling window but affect the data, see e.g. Ripley (1988) and Baddeley & Gill
(1997). Less attention has been paid to the possibility that the positions of objects
within the sampling window may be contaminated with points not belonging to the
true point pattern, that points may be lost and that the positions may be subject to
displacement. These errors imply that the ‘true’ point process X = {X;,i =1,...,m}
is not observed. Instead, the inference is based on Y = {V¥;,j = 1,...,n}, a random
transformation of X. Evidently, the number of points in X and Y may differ. Diggle
(1993) deals with independent random displacement of points. In the present paper
the random transformation consists of random thinning, displacement of points, and

superposition with additional points.

We are for instance interested in point patterns originating from tree positions. Ex-
tracting a tree position map of a forest area is severely restricted by the need of
extensive field work. In case a large data set of this type is needed, recently developed
cost efficient data collection methods such as GPS (Global Positioning Systems) can
be applied. The choice of the observation method can be viewed as a compromise

between cost and precision.

A further step in cost efficiency is the use of indirect observation methods such as
airborne photography as well as spectrometer, laser, and radar imaging where the ob-
served process can be highly degraded. An example can be found in Dralle & Rudemo
(1997) where positions of trees in a forest area are estimated from a panchromatic
aerial photograph. There the tree-top positions are estimated from a grey-level image.
The obtained point pattern is subject to errors caused, for instance, by the irregular
forms of the tree-tops and by motion due to wind. An idea towards rigorous modelling
is further developed in Larsen & Rudemo (1998) based on template modelling and in
Lund & Rudemo (1998) which gives a likelihood model for tree-top positions observed
from a grey-level image through templates. Empirical results on estimation of stem
numbers from digitized aerial photographs for stands with regular and clustered tree

patterns are given in Uuttera et al. (1998).

We pose two statistical problems which appear in the analysis of point patterns ob-

served with errors and suggest a Bayesian approach to treat them.

The first problem is to make statements about the unobserved point pattern X =
{Xi,i =1,...,m} given the noise-corrupted pattern Y = {Y},j =1,...,n}. This part
can be interpreted as a further development of Lund & Rudemo (1998) which gives a

statistical model and an approximation to the likelihood for efficient calculation useful
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in the analysis of training data where both X and Y are observed. However, in forest
inventories typically only the Y-process is observed and the investigator is faced with
an inverse problem resembling image restoration, see e.g. Besag (1986). We advocate
a Bayesian approach: construct a prior model L(X) for the unobserved point pattern,
an error model L(Y|X) for the measurement noise, and give a Markov chain Monte

Carlo (MCMC) estimate for the posterior L(X|Y) o« L(X)L(Y|X).

The second problem deals with point process statistics for the unobserved point pattern
X. Commonly used data summaries are the K-function of Ripley (1976), the nearest
neighbour distribution G and the empty space statistic F', see e.g. Diggle (1983). The
uncertainty of these estimators for an observed mapped point pattern is e.g. derived
from simulation of a hypothetical model as in Ripley (1977). The observed uncertainty
may be expressed in terms of pointwise confidence limits. For indirectly observed point
patterns degradation adds an extra source of uncertainty. Some analytical progress in
calculation of the K statistic is possible. Diggle (1993) derived the connection between
the K-function of the X- and Y -processes with independent random perturbations of
the X-points. This connection is intractable for G and F' functions. We bypass this
problem by suggesting posterior estimates for K, G, and F derived through MCMC

sampling.

Bayesian analysis of an unobserved point pattern from a related noisy observation is
studied in Baddeley & van Lieshout (1993, Sec. 5) too, where cluster centres are esti-
mated from a cluster process. Our problem may be formulated in a similar way with
the number of offsprings being one or zero. In addition, motivated by our forestry
application we superimpose an independent point process. We focus on the statistical
properties (interpretation) of the unobserved point pattern rather than reconstruction
(prediction). Cressie & Lawson (1998, 1999) use cluster processes with two types of
points and MCMC in their application for detecting mine fields from noisy obser-
vations. Related methods for mine field detection with model-based clustering are

studied by Dasgupta & Raftery (1998).

Our methods are applied to a forestry dataset where indirect observation of the tree
positions are obtained by image analysis. For this particular dataset the true positions
are known too, and we compare them with the results from our Bayesian method
applied to the noisy observation. We study the performance of both a Poisson prior
and Gibbs priors with Strauss and logistic pair interaction functions in the estimation

of statistical summaries.

Section 2 describes the model for the disturbances of the original X point process,
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and Section 3 describes prior models for the point pattern X. The analysis of the
posterior model is done by MCMC sampling and statistical summaries as outlined in
Section 4. Section 6 contains the application in forestry and image analysis, and some

final remarks are made in Section 7.

2 A model for point pattern disturbances

Let X = {X;,i € M}, where M = {1,...,m} is the index set of X, be a finite point
process on a bounded set A C R*. We consider X as the ‘true’ point process and we

have observed a disturbed version Y = {Y;,5 € N}, N ={1,...,n}, of X.

The conditional distribution of the observed Y-process given the X-process is denoted
by L(Y|X). It defines the connection between the true process and the observations
allowing both missing and extra points, and disturbances of positions. Parameters in
this measurement model may be estimated from training data where both X and Y
have been observed. In detail, the model consists of the following three independent

components:

(a) Thinning. The points X;, i € M, are retained with probability p(X;) and thinned
with probability 1 — p(X;) independently of each other.

(b) Displacement. An unthinned point X; is displaced according to a probability
distribution with density k(-|X;), i € M. The displacements are independent,

and points displaced outside A are censored.

(c) Superposition of ghost points. Points from an independent Poisson process with

intensity A(-|X) are superimposed on the set of displaced points inside A.

We will be more specific and make some simplifying assumptions. Assume that (i) the
thinning probability is homogeneous, 1 — p(X;) = 1 — p, and (4i) the intensity of the
superimposed Poisson process is homogeneous as well, A(-|X) = A. Furthermore, we
assume (4ii) that k(-] X;) corresponds to a normal d-dimensional distribution Ny(X; 4+
u,Y). Here p is a systematic displacement common to the X-points. In the planar
case (d = 2) this leads, with u = (u1, u2) and ¥ equal to the two-by-two matrix with

diagonal elements 0? and ¢ and off-diagonal elements poj0o9, to the parameter vector
0= (pa >‘a K (42, 0'%, U%a /))
Let |B| denote the number of elements in a finite set B and let |Bl|; denote the d-

dimensional volume of B when B is a measurable subset of R?. For two finite sets
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M, and N; with |M;| = |Ny| we let P(M;, N1) denote the set of all bijections 7 from
M, to Ny. Introduce Sp,, = {(M;,Ni,m) : M1 C M = {l,...,m}, Ny C N =
{1,...,n}, |Mi| = |Ny|, # € P(M;,Ny)} for myn > 0. In case m = 0 (n = 0)
we let M = ( (N = 0) in the definition. Further, define S = U_, U2 Sp.n, and
provide S with the o-algebra consisting of all subsets. We let s = (My, Ny,7) € S
specify the correspondence between X- and Y-points and we call s a ‘matching’ with
the interpretation that (X;,¢ € M;) and (Y}, j € Ni) consist of matched points. More
precisely, Y(;) is matched to X; for ¢ € My, that is, Y;(; is obtained from X; by

displacement.

Define

T(X, Y, 0, S) = L1 LQ L3 L4
for s = (Mj, Ny, ) where

=pMUTT k()| Xy 2, D),

1€ My
L= ]] <p/ k(y|Xi, p, 3) dy +1 —p> :
ieM\M A
Ly = AWl exp((1 = V)] 4]a),
Ly = 1(s € Syx|vy) -

Here Ly corresponds to unthinned points displaced within A, Lo to thinned points and
unthinned points displaced out of A, and L3 to superpositioned ‘ghost’ points. We have
used the notation A° for the complementary set R? \ A and 1(-) for the indicator func-
tion. As discussed in Lund & Rudemo (1998) the approximation [ . k(y|X;, u, X) dy =
0 is reasonable in our application as the size of the displacements is very small com-

pared to the region A. With this approximation we have that Ly = (1 — p)/M\M:i,

Theorem 1 in Lund & Rudemo (1998) states that the likelihood for (X, #) based on
the observation Y is
LY|X,0) = T(X,Y,0,5), (1)
s€S

with the reference measure taken as the Poisson process with intensity 1 on the set
A. One should note that the sum typically contains a very large number of non-zero
terms but the number of leading terms may be small and thus approximations are
possible. In the sequel we will consider the joint likelihood of the point processes Y

and the matching s given by

L(Y,s|X,0) =T(X,Y,0,s), (2)
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with the reference measure taken as the product of the measure of a Poisson process on
A with intensity 1 and the counting measure on S. The connection between (1) and (2)
is that (1) is the marginal distribution of the point process Y in (2). The matching
s is unobserved and thus (2) could be considered as a missing data model (Smith &

Roberts, 1993, Sec. 6).

3 The prior distribution for X

The pattern of tree positions in a forest typically shows some kind of structure. For
example, if the forest is thinned we do not expect trees to be very close to each other.
In addition, planted forests typically have a row structure visible during a considerable
time after plantation provided the forest is not too heavily thinned. It seems useful to
include such information in the form of a prior distribution L(X) for the unobserved
point pattern X. This leads us to concentrate on prior distributions giving low weight

to point patterns with close neighbours, that is, clustering is avoided.

We will consider Gibbs point processes on A with a pairwise interaction function H
as point process priors. The density is defined by
f@) =c]let@) T[] H(lwi— =) (3)
T; x3,x5,i<]
with respect to the unit rate Poisson measure on A, where ¢ is the normalizing constant,
a(z) describes the spatial inhomogeneity, H is the pair interaction function, and ||z —
2'|| is the d-dimensional distance between z and 2/, see e.g. Stoyan et al. (1995). We
have no a priori indication of inhomogeneity, and we take a(z;) = «, a constant. The
interpretation of « is that «|A|; equals the expected number of points in A — had it
been a Poisson process. We assume that H(r) < 1 and that H(-) is nondecreasing
which leads to a repulsive local behaviour. We consider three choices of the pair
interaction function: (i) a Poisson process with H(r) = 1 for all distances r, (i) a

Strauss process prior where
H(r) = WI(USTSR)

for fixed R with 0 <~ < 1, where v = 0 corresponds to a hardcore process , and (744)
a logistic pair interaction function

1
" T+ exp(—B(r—R))’

The interpretation of the parameters in the logistic function is as follows: G > 0

H(r)

describes the steepness of the curve; R defines the distance where H(R) = 0.5. Instead
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of (8, R) we use the parameters (H(0), R). Note that H(r) — 1 as r — oo, and that

B — oo (i.e. H(0) — 0 when R > 0) leads to a hardcore Strauss process in the limit.

The main disadvantage of using a non-Poisson Gibbs distribution prior for X is that
there is no simple expression for the expected number of points in the prior and the
normalizing constant ¢ of the distribution is unknown. Here we suggest to fix the
parameters in such a way that the expected number of points in L(X) approximately
corresponds to the number of trees we expect to find and that there is a reasonable
repulsion between points. Suitable values for the prior parameters are found by sam-
pling from the prior distribution by the algorithm described in Geyer & Mgller (1994).
The number of trees may be inferred from exploratory analyses as in Dralle & Rudemo
(1996). The discussion in Section 7 has comments on alternatives to this approach and

problems associated with the unknown normalizing constant.

4 Sampling from L(X|Y,0)

Maximum likelihood estimation of # in the model (1) when both X and Y are observed
was treated in Lund & Rudemo (1998). In the present paper we will focus on the
conditional distribution of X given Y when the parameter 6 is assumed to be known.
The knowledge of # can, for instance, be obtained through training data sets observed

under similar conditions as the current data.

We suggest a simulation based Bayesian analysis with the model (2) as the measure-
ment error model. The matching s is introduced as missing data and the simulation
method moves randomly among matchings. Thus calculation of the large sum over

s € Sin (1) is avoided and replaced by a large number of simulations.

4.1 Outline of the Bayesian analysis

The basic idea is to get information on the unobserved quantities by looking at the
conditional distribution of the unobserved X-points given the observed Y-points with
a fixed model parameter . This type of inference is typically based on the posterior
L(X|Y,0). However, it is more attractive to simulate the joint posterior L(X, s|Y,0)
of X and s, and we thus consider s as missing data and derive the X marginal from
L(X,s|Y,0). In addition, the posterior distribution of s may give further informa-
tion on the data and additional model assessment possibilities such as diagnostics of

the displacement distribution. We construct a sampler of Metropolis-Hastings type
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along the lines described in Geyer & Mpller (1994) and Green (1995). The details are

presented in Section 4.2.

Given the prior distribution L(X) for X we get L(X,s|Y,0) = L(X,Y,s|0)/L(Y]0)
with L(X,Y,s|0) = L(Y, s|X,0)L(X). Notice that in the sampling procedure it is not
necessary to know the normalizing constant, but it suffices to know that L(X, s]Y, )
T(X,Y,0,s)L(X). However, see the discussion in Section 7 for some potential problems

associated with unknown normalizing constants in the prior distribution.

4.2 MCMC algorithm for posterior sampling

In this section we suggest an MCMC algorithm for sampling of the posterior L(X, s|Y, 0).
It is based on the Metropolis-Hastings sampler for point processes suggested by Geyer
& Mgller (1994), which is a special case of the variable-dimension sampler of Green
(1995). A detailed description of a related reversible jump algorithm can be found
in Heikkinen (1998). Our algorithm defines a Markov chain with transitions (Xy, s¢) —
(X¢41, St+1) having the posterior L(X, s|Y, 0) as the stationary distribution. In an up-
date of the current state (Xj, s¢) at time ¢, first a suggestion using a ‘proposal kernel’
Q(X¢, 515 X[ 11,511, 0) is made. The obtained proposal (X}, s}, ) is then accepted
with probability & = min{1, r} where r = rposterior X "proposal X || is the Hastings-Green
ratio with
, o L(Xi41, 51411, 0)
posterior T(Xp,5i]V,0)

r | = Q( £+1152+1;Xt15t|Y1 9)
PROPOSE T Q( Xy, 815 X415 8044 [Y,0)

and J is the Jacobian due to the change of dimension of the state space. (In our case
the Jacobian is identically one because we do not make any changes to points in the
configuration but just add and delete points.) We put (Xy41,si41) = (Xj, 4, 8;,) in

case of acceptance and (X411, $t41) = (Xy, 8¢) in case of rejection.

From a current state (X, s;), where X; has index set M; and s; = (M ¢, N1, ), we
obtain a proposal (X, ;,s},;), where X/ | has index set M/ ; and

Sir1 = (Mj 441, Vi 441, T41), in a two-step procedure. First we choose to add or delete
a point with probabilities b(X;) and 1 —b(X}), respectively. Then, we select a matched
or an unmatched point with probability h(Xy, s;) and 1 — h(Xy, s¢), respectively, in
the add case, and 1 — h(Xy, s;) and h(Xy, s;), respectively, in the delete case. More

precisely, we get four possible proposal types with probabilities as follows:
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(i) Add a matched point with probability b(X;) h(Xy, st).
Choose an unmatched free Y-point uniformly among the N\ N; ; available points,
say Yj. Generate { ~ N(Y; — p,¥), and put X/, = X; U {¢}. Form s, from
s¢ by adding § and Y; with Y; matched to . We find that

L(X{y1, 814117, 6) L(X£+1)£k

Tposterior = T (X silY,0) LX) A

(Y51€, 1, )

and

; _ (L= B(X U{ER) (1 — (X U {g}, 5340)) /1M 41|
proposal b(X1)h( Xy, s1)k(Y51€, 11, 2)/IN \ N1l

with [M{ ;| = [Mi 4]+ 1. Note that the factors from the normal density cancel
each other in r because we generated { ~ N(Y; — p, ¥) in the proposal, which
has density k(Y;|¢, i1, 3) as a function of &.

(#3) Add an unmatched point with probability b(X;) (1 — h(Xy, s¢)).
Put (X[, ,,s,,1) = (Xp U{£}, s¢) with £ uniformly distributed on A, and make
no new connections between X- and Y-points. We find that

, o L(X{i 1, 51411Y.6) _ L(Xi1) (1—p)
posterior L(Xt, St|Y, 9) L(Xt)

and

- _ (1 =b(Xy U{EP)R(X U{EY, sipq)/IM{ 4\ M{,t+1|
proposal b(Xo)(1 — h(Xy, 1))/ |Alg

with |Mj,; \ M{,t+1| = |M;\ M|+ 1and s;,; = s;.

(73i) Delete a matched point with probability (1 — b(X;)) (1 — h(Xy, s¢)).
Choose, say X;, uniformly among the M;; paired X-points, and put X/ , =
X; \ {Xi}. Delete the connection between X; and Yr(; in s; to obtain AR
Delete-moves have r-values as reciprocals of the r-values found above in add-

moves. We see that

Foostorior = L(Xi 1, 51441Y50) _ LX{ 1) A 1

L(Xy,5]Y,0) L(Xt) p k(Yo Xi,pn, )
i DX\ XA\ (X} sk (Vg | X 1 Z) /(N \ Nig| + 1)
proposal (1= b(X0)) (1 — h(Xy, 1)) /[ My ] '

(iv) Delete an unmatched point with probability (1 — b(Xy)) h(Xy, s¢).
Choose, say X;, uniformly among the |M; \ M; | unpaired X-points, and put
(Xit18t41) = (Xp \ {Xi}, 5¢). Then
L(Xj 18141Y,0)  L(Xp) 1

T'posterior = L(Xt,8t|Y, 9) = L(Xt) 1 _pa
- = (X \ { X3 }) (1 — h(Xy \ { X}, s0)) /| Al
proposs (1= b(X3))h( Xy, 80) /| My \ My
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A number of special cases are not covered by the above description. For example, if
we propose to add a matched point and there are no free Y-points, or if we propose to
delete a point and the current X configuration is empty, then we do nothing and put
(Xt41,8t41) = (Xy, s¢). This is the same as modifying the proposal kernel slightly in
those situations and propose a “do nothing” step instead of the impossible update. Such
“do nothing” proposals are always accepted. In a similar fashion, we put (Xy41, St41) =
(Xt, s¢) when the proposed point £ in (7) is outside A. This can also be thought of as
the introduction of a “do nothing” step in the proposal kernel and a slight modification
when the point is matched. For instance, we could say that we propose to match
the point Y with probability b(X;)h(X¢, s;)/|N \ N1yl - [, k(Y;|€, 1, X) d€ and then
generate § as N (Y;—p, ¥) conditioned to be inside A. In any case, the above acceptance

probabilities ensure that our Markov chain has the correct stationary distribution.

In practice we cannot suggest forms of b(X;) and h(Xy, s;) that generally seem to work
better than b(X;) = h(Xy,s;) = 1/2, and we use this simple choice. In this case the

factors corresponding to b(X;) and h(Xy,s;) in the r ratios cancel out.

We just propose the basic moves of adding or deleting points. Geyer & Moller (1994)
find in the simpler situation of simulation of a Strauss process, that their sampler has
the best mixing properties when they only consider additions and deletions of points.
In the example in Section 6 this turns out to be sufficient in our case too. Additional
move types like “displacing a point” or switches in the matching s could have been
considered if mixing of the chain had turned out to be too slow. If the chain tends to
get stuck in local maxima of the density a simulated tempering scheme could also be

useful (Geyer & Thompson, 1995).

Convergence of the Markov chain {(Xy, s¢),t = 1,2,...} to the stationary distribution
L(X,s]Y,0) for any initial distribution can be established in a way similar to Geyer
& Mpller (1994). Our Markov chain is irreducible as the displacement distribution
E(-|p, ¥) is Gaussian and we assume that both b(X) and h(X, s) have values in (0, 1) for
all (X, s). Then the empty configuration (@, ()) can be reached with positive probability
from any configuration (X,s) in a finite number of steps. Our Markov chain has
invariant distribution L(X, s|Y, ) so Theorem 1 in Tierney (1994) says that the Markov
chain is positive recurrent, and it is further possible to show that the chain is Harris
recurrent. Theorem 3 in Tierney (1994) gives the convergence of sample averages of
measurable integrable real-valued functions g on the state space of X,

L T

73000 = [gOOLX sV 0d(X5) = [ g(XILEXIY. 00X

T t=1

10



5 Statistics derived from the MCMC samples

with L(X, s|Y,0)-probability one. Furthermore the transition (#,0) — (0,0) takes
place with positive probability for any number of steps, and thus our chain is aperiodic.
This means that the n-step transition matrix P™ converges in total variation norm to
the stationary distribution L(X, s]Y,#). Central limit theorems for the sample averages
may be obtained from geometric ergodicity of the Markov chain, cf. Geyer & Mgller
(1994).

5 Statistics derived from the MCMC samples

The algorithm of Section 4.2 results in a sequence X', X2,..., XT of point patterns
with a variable number of points and where T is chosen to be large (in our application
T = 100000). These patterns can after a burn in period be considered as a (dependent)
sample of the X-marginal from the posterior L(X, s|Y, ).

A useful summary plot is a kernel-smoothed version of the union U};IX J. This gives
information on the conditional intensity of X-points given Y and 6. A feature, to be
discussed below, is that the set of matched points and the set of unmatched points call

for quite different smoothing bandwidths.

We also suggest explanatory statistics and figures which give information on the pos-
terior distribution beyond the (marginal) posterior intensity. One such figure shows
the probability that a Y-point gives rise to a matched X-point as a function of the

distance to the nearest neighbour Y-point and whether the Y-point is matched or not.

For our purposes it is informative to calculate point process summaries which supply
information on the neighbour structure of the point positions of X. Conventional point
process statistics are the K, G and F-functions defined as follows, see Ripley (1981),
Diggle (1983):

(i) K(r) = (1/Ax)E[|X Nnb(x,r)\ {z}| || =]. Here b(x,r) is the ball with radius r
and centered at x, Ax is the intensity for the X-points, and the expectation is
conditional given that there is an X-point at z (conditional in the Palm measure
sense with the notation E[- || -]). The interpretation of K is that Ax K(r) is the

expected number of additional points within distance r from a typical point.

(ii) G(r) =1—=P(|X Nb(z,r)]—1 =0 | z) is the distribution function of the point

to nearest point distance called the nearest neighbour distribution function.

(ii) F(r) =1 —P(|X Nb(z,r)| = 0) where x is an arbitrary location. This is the

11
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distribution function of an arbitrary location to nearest point distance and is

called the empty space distribution function.

Note that (i) and (ii) are conditional Palm type characteristics. Nonparametric edge

corrected estimators exist for K, G and F, see e.g. Diggle (1983). The functions are

estimated from X', X2, ..., XT by pointwise medians of the estimator derived from

each sample.

Let us from now on consider planar point processes. For a stationary Poisson process
with intensity A the F' and G functions are F(r) = G(r) = 1 — exp(—Anr?) for r > 0,
and K(r) = 7%, r > 0. Hence the transformation L(r) = \/K(r)/r is commonly

applied.

The effect of the three sources of error described in Section 2 on the K-function is

known or can be derived when the point process is stationary and of second order:

(a)

Thinning. If the transformation X — Y is independent thinning, then
Ky (r) = Kx(r) (4)
for all » > 0, see e.g. Theorem 2.2 in Diggle (1993).

Displacement. Assume that Y is generated from X through independent dis-
placements using a radially symmetric perturbation distribution A(-). In the com-
putation of Ky independent perturbations of a pair of points in X may be treated
as a one-point shift with the perturbation distribution f(z) = [p» h(z—y)h(y) dy,
the convolution of two h-functions. For ||z|| = u we put R(r,u) = fllZlIST flz—
x) dz observing that the integral depends on x only through ||z||. Note that
R(r,||z||) is the probability that the distribution f(-) will move a point at = to
any location z with ||z|| < r. Then Ky can be obtained from Ky as

9 2w [
Ky (r) =mr®+ Z R(r,u)yx (u)udu (5)
X JO
where vx (r) is the (isotropic) covariance density of X given by

1 d

——K —1].
2mr dr x(r) ]

) =% |
This connection is due to Diggle (1993).

Superposition of ghost points. If the transformation X — Y is the result of
a superposition, Y = X U Z, of X and an independent homogeneous Poisson

process Z with intensity Az = aAx, then

Ky (1) = frrage [Kx() + a2+ a)mr?]. (6)

12



6 Example: tree-top positions from aerial photography

This follows from the fact that if x is a randomly chosen point of X U Z then
z € X with probability Ax/(Ax + Ay), and the formula

_ 1 Ax
_Ax-l-)\z Ax + Az

Az

+ —"2  Axmr? 4+ Mg
Ax + Az X Z

Ky (r)

Ax Kx(r)

Summarizing, if Ky is estimated from the degraded data Y, then the corresponding
estimate of the Kx function for the unobserved X process can be found under any of

the three transformations when the transformation parameters are known.

The equations (4), (5), and (6) can be solved recursively in the case where the three
sources of errors appear simultaneously: Applying (6) we obtain the K function of the
displaced points, wherefrom (5) gives the K function of X because the K function is

invariant under independent thinning due to (4).

Despite the possibility of solving equations for K, our Bayesian approach seems prefer-
able. First, using the connections above we are not able to express the sampling
variation of the estimator of the K function. Second, matching between the X- and
Y -points gives further information for interpretation. Finally, similar connections for
the G and F' functions are not known; more generally, our Bayesian method can be

applied for any point process summary.

6 Example: tree-top positions from aerial photography

6.1 The observed point process obtained from template matching

The data analysed originate from a series of aerial photographs of a thinning ex-
periment in Norway spruce (Picea abies (L.) Karst.), see Dralle & Rudemo (1996,
1997) for a detailed description of the experiment and image aquisition. For one
of the photographs and one of the subplots in the experiment an observed point
process Y = (Y7,...,Y,) with n = 206 points was obtained by template match-
ing (Larsen & Rudemo, 1998). This data set together with the ‘true’ tree-top positions
X = (X1,...,X,) with m = 171 was analysed in Lund & Rudemo (1998) with focus
on parameter estimation in the conditional likelihood L(Y| X, 6) when both X and Y
are observed. The X- and Y-points are shown in Figure 1. In the present paper we
study the posterior distribution of X from an observation of Y, given the parameters
f and a prior distribution for X. We use the 8-parameters found in Lund & Rudemo

(1998) for the reconstruction of X in this paper. The parameters are given in Table 1.
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6.2 Prior distributions

6.2 Prior distributions

We have used a Poisson process, a Strauss process, and a further Gibbs point process
with logistic pair interaction function as prior distributions for X. The parameters,
which are given in Table 2, are chosen such that the expected number of points in the
prior distribution is approximately 171 — the true number of trees. We have also tried

other parameter combinations with similar results, but they are not shown here.

The Poisson process can be regarded as a neutral prior with respect to the interaction

between points as there is neither repulsion nor attraction between points.

6.3 Comments on simulations

The X- and Y-points in the region A are shown in Figure 1 together with the border
of A. The region A is almost convex and, for computational convenience, the points
from the posterior distribution are generated in the convex hull of A and subsequently

points outside A are discarded in the figures.

Figure 2 shows the number of simulated X-points and the number of points that are
matched for a run of length 102000. The prior used in this particular run is the
logistic prior of Table 2, but the graphs are similar for all the priors. The simulations
are started from the empty state (i.e. the lower left corner) and as indicated by the
figure the number of simulated points stabilizes quickly. From time series graphs of
the two marginal distributions and figures like Figure 3 with an individual sample it
is judged to be sufficient with a burn in of 2000 steps. The two basic add and delete
moves used here seem to be sufficient for a satisfactory mixing of the chain. The
following 100000 simulations are used in the estimation of mean values etc. However,
only every 200th simulation is used in the estimation of the L, GG, and F', functions in

Section 6.5.

Table 3 shows some summary statistics for simulations of the priors and posteriors. In
general the acceptance probabilities of the chains seem very reasonable. As the moves
just go up or down one point at a time there is a fairly strong autocorrelation in the
chain. There are two approaches to remedy this. The first one is to let the proposals
add, delete, and move several points in each step, which, however, might lead to lower
acceptance rates. Instead we prefer to subsample the original Markov chain at evenly
spaced points. From Table 3 we see that the number of X-points sampled at every
200th simulation are fairly weakly correlated. It is worth noticing that it was difficult

to fine-tune the parameters of the prior to obtain a mean number of points of 171 as
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6.4 Realizations from the posterior distribution, intensity surfaces

we aimed at. In the Poisson prior it is possible to adjust the parameter such that the
theoretical mean number of points is exactly 171 points, but still the sample mean is
a bit higher. A study of plots of the number of X-points versus simulation number
indicates that the reason for the fine-tuning difficulties are some weak but long term

correlation components.

6.4 Realizations from the posterior distribution, intensity surfaces

Figure 3 shows one realization from the posterior X distribution. The simulated points
are marked with crosses, and the matched ones have a line from the center of the cross
to the Y-point it is matched to. In most cases the corresponding Y-point is so close
to the simulated point, that it is impossible to see this line. In general most of the

simulated points are matched.

Estimated intensity surfaces are shown in Figures 4 and 5. Figure 4 shows the esti-
mated intensity surface for all simulated points, while Figure 5 shows the estimated
intensity surface for the free points alone. Both figures are based on 100000 simulations
and are smoothed by isotropic Gaussian kernels. One problem is that the intensity
surface for the matched points which are heavily clustered around the Y-points call for
a small smoothing bandwidth, while the free points which are distributed over larger
areas (and which are fewer in number) call for a large bandwidth. In Figure 4 which is
based on both matched and free points we have thus smoothed the two types of points
separately with variances 6 and 100 (unit pixel squares) in the isotropic kernels. The
intensity surfaces are then added after the smoothing. Thus we use here the simu-

5100000 59 well as the simulated point patterns. Note that the

lated matchings s, ...,
maximum of the intensity estimate in Figure 4 is more than 200 times larger than the

maximum of the intensity estimate in Figure 5.

By comparison with Figure 1 we note the main feature of the posterior intensity
in Figure 4: it is concentrated around the observed Y -points with pronounced local
maxima. A closer look shows that these maxima attain lower levels at Y-points with
close neighbours; look in particular at the area in the lower part of Figure 4 around
(450, 150), where there is a cluster of Y-points. In contrast, Figure 5 shows that the
posterior intensity for the free X-points has elevated levels in areas away from the

Y -points.

Figure 6 shows the probability that a Y-point is matched given the distance to the
nearest Y-point. The probability of being matched increases with the distance. Fur-
thermore, if the nearest neighbour is matched (not matched), then the probability of
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6.5 L, G, and F, functions

being matched is lower (higher) than the overall probability of being matched. The
difference is greater for small distances than for large distances. For large distances
it seems that the “advantage” of having a free nearest neighbour is greater than the

“disadvantage” of having an occupied neighbour.

6.5 L, G, and F, functions

Figures 7, 8, and 9 show the L, G, and F functions estimated on the basis of the true
X-points, the Y-points, and posterior estimates. The posterior estimates are pointwise
medians of the corresponding functions from the simulated point patterns. On these
graphs that contain several simulations, a particular simulation is identified by the
name of the prior distribution with an indication of whether it is a posterior or prior

distribution and the parameters in the prior distribution.

The L functions in Figure 7 show that the estimate based on Y is clearly biased towards
a Poisson process compared to the curve based on the true X-points. The estimate
based on the Poisson process prior is (as expected) even more biased towards the
Poisson process. The estimate from the Strauss prior is in reasonably good agreement
with the truth, but the cut point in the Strauss process is unfortunately very evident in
the posterior distribution. The estimate based on the prior distribution with a logistic
pair interaction function is smooth. It is also clearly better than the raw estimate

based on Y.

The G function in Figure 8 based on Y is again clearly biased compared to the function
estimated on the basis of X. In X there is a hard core distance between points at
approximately 10 pixels. The estimate based on a Poisson prior is similar to the raw
estimate based on the Y-points, although more smooth. Again, the Strauss based
estimate has the cut point, and the logistic based posterior is smooth, and both are

definitely better than the raw estimate.

For the F functions in Figure 9 the curves are more similar than for the L and G
functions. The bias in the Y estimate is not large, and in fact the Poisson prior gives
the largest departure from the true curve. Note that the cutpoint in the Strauss process

is not evident in this graph.

Figure 10 shows the 95% credibility regions for the L-function from the MCMC runs.
Note that these bands only express variability from the posterior distribution and
not any uncertainty in the estimation of the ‘true’ curve due to finite window. The

uncertainty of the median estimate is of course a lot smaller than the shown credibility
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7 Discussion

bands.

In Figure 11 we compare for a logistic prior the posterior L-curve with the prior L-
curve and the L-curves for the Y- and X-points. We note that the posterior curve is
closer to the true curve of the X-points compared both to the prior curve and to the

observed curve.

7 Discussion

7.1 Comments on the suggested approach and possible modifications

The Strauss process is useful as a prior distribution due to its simplicity. Even though
the cut point chosen in the prior distribution also turns up in the posterior distribution,
the estimates from posterior distributions are clearly better than the raw estimates.
However, in general we recommend the logistic prior because of the smoothness of the
posterior estimates. It would be useful to have a larger class of prior distribution than
those considered here, as one might then tailor the prior distribution more accurately
to prior knowledge. The drawback of using a larger class of prior distributions is that

is becomes even more difficult to decide on the parameters.

Asmentioned in Section 3 the main disadvantage of using a non-Poisson Gibbs distribu-
tion prior for X is that there is no simple expression for the expected number of points
in the prior. We fixed the parameters in the prior by a simulation study of the prior.
Another suggestion would be to factorize the prior as L(X) = L(X| |X| = n)L(n).
However, this leads to difficulties in the Metropolis-Hastings updates described in Sec-
tion 4.2. Due to the intractable normalizing constant Z,, of L(X| |X| = n) we cannot
calculate the fraction Z,/Z, 1 needed in the acceptance probability for each proposal
of an addition or deletion of a point. Baddeley & van Lieshout (1993) did as we do

here — fix the parameters in the prior distribution.

If a fully Bayesian approach should be used then a hyperprior for the parameters 0p,or
in the prior distribution should be introduced. There are two problems with this ap-
proach. First, it is difficult to specify meaningful hyperpriors as there is no simple
connection between the parameters in the prior and basic summaries as the mean
number of points in the prior. Second, the fraction between two unknown normaliz-
ing constants ¢ of the density (3) should be computable in each update of the prior
parameter. Cressie & Lawson (1999) used a Poisson approximation (Ripley, 1988) for

the normalizing constant in a Strauss process prior to circumvent the second problem.
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7.2 Conclusions

The assumption of a constant fpor in the prior distribution L(X |fprior) could be

partially relaxed using the following procedure: First, for a fixed value Ggrior, a real-
ization Xy from L(X|Y, ggrior) is simulated. Then 6oy is estimated from Xy. This

new Gprior, Or a fprior Obtained after a few iterations of the procedure, is used in the
final estimation of X. This is now an empirical Bayes type procedure used in image
analysis in connection with Markov field priors, see e.g. Besag (1986). The advantage
of this extension is to adapt the choice of 0o to the data when prior information on

X is lacking.

We have assumed that the model parameter vector 6 = (p, \, i1, j12, 02, 03, p) is known,
but in principle it is reasonably straightforward to include uncertainty of # in the
calculations. A natural way to do it would be to put a prior distribution on 8 as well
as on X. Then we would sample from the posterior distribution of (X, s,#) given Y.
This sampler could contain a Gibbs like step alternating between sampling from (X, s)
given (Y, 6) and sampling from 6 given (X, Y, s). The first sampler needed is the same

as described in Section 4.2, and the second one is reasonable standard.

In general the posterior distribution L(X Y, 0) is not stationary, which somewhat com-
plicates the interpretation of our estimates of the L, GG, and F functions which are de-
fined for stationary point patterns. However, point patterns generated from L(X|Y,#)
resemble the realization from the underlying true stationary distribution of X that gen-
erated our observation Y. Thus the functions estimated from these generated point
patterns are useful as estimates of the functions for X, and this is what we are aiming

at.

For forestry applications a particularly attractive characterization of a tree position
point pattern is the corresponding Voronoi tesselation, which for each tree would in-
dicate the “space” available. Compare Figures 5 and 6 in Berndt & Stoyan (1997)
which give tesselations for manually and automatically determined point fields in an

application from metallurgy.

7.2 Conclusions

We have described a method to analyse degraded point patterns. The method is
a sample based Bayesian approach, and we are able to compute posterior versions
of several important point process statistics. By this method we can make general
posterior statements which are focused on the particular problems of interest whereas
the existing analytical methods (Diggle, 1993) are limited to statements about the K

function only. This work can also be considered as a theoretical and practical step in
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the development of a high precision airborne forest inventory system, simultaneously

reducing expensive field work.
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Tables and figures

0 ‘ P A 41 149 o? o3 01020

Value‘0.941 0.000275 —0.342 0.0815 1.047 2.028 —0.0489

Table 1: Parameter vector § = (p, \, ju1, it2, 02, 03, p) used in the analysis.

Distribution ‘ Parameters

Poisson alAlg =171
Strauss (o] Alg,y, R) = (455, 0.14, 17)
Logistic (a|Alq, H(0), R) = (530, 0.05, 15)

Table 2: Parameters used in the prior distributions.

Acceptance  Autocorrelation of | X|,
Run Mean |X|  Mean | M| probability 200 steps apart
Poisson, prior 174.1 0.97 0.58
Poisson, posterior | 171.6 161.3 0.90 0.18
Strauss, prior 173.3 0.50 0.60
Strauss, posterior | 176.2 167.0 0.51 0.26
Logistic, prior 176.7 0.67 0.47
Logistic, posterior | 178.1 169.0 0.69 0.14

Table 3: Summaries of simulations from both the prior and posterior distributions.
After a burn in of 2000 steps, the posterior chain was run for 100000 steps, and the
prior chain for 50000 steps. “Mean |M;|” is the mean number of matched X-points
and does not make sense for prior simulations.
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Figure 1: 171 X-points (centres of circles) corresponding to ‘true’ tree-tops and
206 Y-points (dots) corresponding to template matching. The area of the delineated
subplot is 4454 m?, and the unit of the axes is linear pixel size, 0.15 m.
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Figure 2: The number of matched X-points versus the number of simulated X-points
for the posterior with the logistic prior. The simulations are started from the empty
state, and converge reasonably fast towards a stationary distribution. The points in
the figure are jittered by independent uniform (0, 1) variables in the horisontal and
vertical directions to facilitate interpretation of the figure.
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Figure 3: A sample realization from the posterior distribution when the prior with the
logistic pair interaction function is used. The crosses x are the simulated X-points.
The matched X-points are connected to the corresponding Y-point by a line.
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Figure 4: Estimated posterior intensity surface (black corresponds to high intensity)
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logistic pair interaction function is used. The maximum of the intensity estimate in
this figure is 0.0351.
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L median functions

Figure 7: Posterior L function estimates. The straight unbroken line is the estimate for
a Poisson process. The other curves are for the true data X, the observed data Y, and

X, true points

Y, observed points
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Figure 10: Posterior L function estimate with 95% credibility intervals.
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Figure 11: Comparison of L-functions for the observed points Y, the true X-points,

the logistic prior and the corresponding posterior estimate.

32

40

30

20

10

Distance



