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SummaryThe main themes of this thesis are spatial statistics and simulation algorithms. Thethesis is split into �ve papers that may be read independently. All �ve papers dealwith spatial models. Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thönnes(1999b) deal with the same new model for point processes observed with noise, andLund et al. (1999), Lund & Thönnes (1999b), and Lund & Thönnes (1999a) has asimulation aspect.Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thönnes (1999b) developand analyse a new model for point processes observed with noise. Usually the anal-ysis of spatial point patterns assume that the observed points (the true points) area realization from a speci�c model. In contrast our approach is to assume the ob-served pattern generated by thinning and displacement of the true points, and allowfor contamination by points not belonging to the true pattern.Lund & Rudemo (1999) develop the model for point processes observed with noise.The likelihood function for an observation of a noise corrupted point pattern giventhe true positions is derived. As data for our analysis is indeed a realization of theunderlying true process and its associated noise corrupted point pattern we need notconsider a model for the underlying process. The parameters in the model describehow many of the true points are lost, how large the displacements are, and the numberof contaminating surplus points. For estimation of the parameters in the noise model adeterministic, iterative, and approximative maximum likelihood estimation algorithmis developed. The likelihood function is a sum of an excessive large number of terms,and the algorithm works by �nding large dominating terms. Alternative estimationmethods are discussed.Lund et al. (1999) analyse the model developed in Lund & Rudemo (1999) with respectto the now unobserved true points. We assume a noisy observation of a true pointpattern and knowledge of the parameters in the model. A Bayesian point of viewis now adopted and we specify a prior distribution for the underlying true process.Given the model, the prior distribution, and the noisy observation, we get the posteriordistribution of the true points. This posterior distribution is investigated by samplesfrom the distribution. These samples are obtained from a Markov chain Monte Carlo(MCMC) algorithm extending the Metropolis-Hastings sampler for point processes. Athorough discussion is provided on the choice of prior distribution and how to presentthe samples from the MCMC runs. The MCMC samples are used to estimate forexample the K-function for the unobserved true point pattern. These estimates areclearly better than estimates based on the observed points alone.The use of the MCMC algorithm in Lund et al. (1999) relies on the fact that a Markovchain run for a long time approaches its stationary distribution. Lund & Thönnes(1999b) uses a recent technique called Coupling From The Past (CFTP) to delivera sample drawn from the exact posterior distribution of the unobserved true pointsdescribed in Lund et al. (1999), a so-called perfect simulation. This perfect simulationalgorithm is based on spatial birth-and-death processes for simulation of point pro-cesses. In order to apply CFTP in our problem the simulation is carried out on anaugmented state space. The algorithm turns out to be too slow in practice and thusdemonstrates possible current limits of CFTP.Lund & Thönnes (1999a) describes a new perfect simulation algorithm for general lo-cally stable point processes. The algorithm is based on CFTP for Metropolis-Hastingsv



vi Summarysimulation of point processes and it is simpler than the previous known perfect algo-rithm based on Metropolis-Hastings simulation for this class of models. The presentstate of the algorithm is that it is far too slow to be useful in practice, and it mighthave some theoretical �aws. These problems are discussed in the introductory part ofthe thesis.Lund (1998) develops a model for survival times of trees that take the spatial positionsof the trees into account. At a �nite number of timepoints it is observed whether atree is alive or not, and thus we have interval censoring of the even aged trees. Themodel is a discrete time version of Cox's proportional hazards model. Positions oftrees are considered as �xed, and they are used to compute competition indices thatenter the model as covariates. It is shown that small trees have a higher risk of dyingthan large tress and the area of the experiment is inhomogeneous. In addition, Hegyi'scompetition index based on basal area is a signi�cant covariate.



Dansk resuméHovedemnerne for denne afhandling er rumlig statistik og simuleringsalgoritmer. Af-handlingen består af fem artikler, der kan læses uafhængigt. Alle fem artikler omhand-ler rumlig statistik. Lund & Rudemo (1999), Lund et al. (1999) og Lund & Thönnes(1999b) omhandler den samme nye model for punktprocesser observeret med støj,mens Lund et al. (1999), Lund & Thönnes (1999b), samt Lund & Thönnes (1999a)indeholder simuleringsaspekter.Lund & Rudemo (1999), Lund et al. (1999) og Lund & Thönnes (1999b) udviklerog analyserer en ny model for punktprocesser observeret med støj. Normalt antages ianalysen af rumlige punktprocesser at de observerede punkter (de sande punkter) er enrealisation fra en bestemt model. Vi antager, at de observerede punkter er fremkommetved tynding og �ytning af sande punkter, samt at punkter der ikke tilhører det sandepunktmønster kan være tilføjet.Lund & Rudemo (1999) beskriver modellen for punktprocesser observeret med støj,og likelihoodfunktionen for en støjfyldt observation, givet det sande punktmønster,udledes. Data for analysen er en realisation af et sandt punktmønster og en tilhørendestøjfyldt observation, hvorfor en model for de sande punkter ikke er nødvendig. Para-metrene i modellen beskriver sandsynligheden for at miste et sandt punkt, størrelsenaf �ytningerne og antallet af ekstra punkter. Til estimation af parametrene i støj-modellen udvikles en deterministisk, iterativ, og approksimativ maksimum likelihoodestimationsalgoritme. Likelihoodfunktionen er en sum af et meget stort antal led ogalgoritmen �nder de største af disse. Alternative estimationsmetoder diskuteres.Lund et al. (1999) analyserer modellen udviklet i Lund & Rudemo (1999) mht. til de nuuobserverede sande punkter. Vi har en støjfyldt observation af det sande punktmøns-ter og kendskab til parametrene i modellen. Fra en Bayesiansk synsvinkel speci�ceresnu en a priori fordeling for den underliggende sande process. Med modellen, a priorifordelingen, og den støjfyldte observation får vi a posteriori fordelingen for de sandepunkter. Denne a posteriori fordeling beskrives med simulerede udfald fra fordelingen.Udfaldene fås fra en Markovkæde med a posteriori fordelingen som stationær fordelingog den er designet som en udvidelse af Metropolis-Hastings algoritmen for punktpro-cesser. Der er en grundig diskussion af valget af a priori fordeling og hvordan udfaldenefra a posteriori fordelingen bedst præsenteres. Udfaldene bruges bl.a. til estimation afK-funktionen for det uobserverede sande punktmønster. Disse estimater er klart bedreend estimater baseret alene på den støjfyldte observation.Markovkæde-algoritmen i Lund et al. (1999) benytter at en Markovkæde udviklet imange trin nærmer sig sin stationære fordeling. Lund & Thönnes (1999b) bruger dennye teknik kobling fra fortiden (Coupling From The Past, CFTP) til at generere udfaldfra a posteriori fordelingen af de uobserverede punkter uden approksimationer, ensåkaldt perfekt simulering. Denne perfekte simuleringsalgoritme er baseret på rumligefødsels- og dødsprocesser for punktprocesser. For at bruge kobling fra fortiden i voresproblem udføres simulationen på et udvidet tilstandsrum. Algoritmen viser sig at værefor langsom i praksis og demonstrerer således mulige nuværende begrænsninger vedkobling fra fortiden.Lund & Thönnes (1999a) udvikler en ny perfekt simuleringsalgoritme for generelle lo-kalt stabile punktprocesser. Algoritmen er baseret på kobling fra fortiden af Metropolis-Hastings simulering af punktprocesser og er simplere end den tidligere kendte tilsvar-ende algoritme. For nuværende er algoritmen alt for langsom i praksis og den kan havevii



viii Dansk resuméteoretiske fejl. Disse problemer er diskuteret i den indledende del af afhandlingen.Lund (1998) udvikler en model for levetider af træer der tager højde for de rumligepositioner af træerne. På et endeligt antal tidspunkter er det observeret, om et giventtræ er i live eller ej, og vi har således intervalcensur af de ensaldrende træer. Modellener en diskret-tids version af Cox's model for proportionale intensiteter. Positionerneaf træerne opfattes som givne og de bruges til beregning af konkurrenceindex, derindgår som kovariater i modellen. Det vises at små træer har en højere dødelighed endstore træer, og at forsøgsområdet er inhomogent. Hegyi's konkurrenceindex baseret pågrund�aden viser sig at være en signi�kant kovariat.
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1 IntroductionThis thesis contains the introductory sections 1�3, the four papers Lund & Rudemo(1999), Lund et al. (1999), Lund & Thönnes (1999b), Lund (1998), as well as thepreliminary manuscript Lund & Thönnes (1999a). The papers consitute the mainpart of the thesis. In this Section 1 we introduce the background for the thesis andgive brief comments on the content of the papers and their relation to Section 2 andSection 3.1.1 A bit of historyThis project started as a continuation of the Ph.D. thesis Dralle (1997) (especiallyDralle & Rudemo (1996) and Dralle & Rudemo (1997)). The fundamental idea in theproject and the work of Larsen (1997) and Larsen & Rudemo (1998) is to identify treetops in aerial photos of Norway spruce.In forestry there is a wish to get information about the number and volume of treesin the forest, as well as the positions of the trees. This will help management andplanning of the forest. So far, the expenses in terms of working hours and money toobtain this information has prevented a detailed inventory. Analysis of aerial photosseem to promise a less expensive way to get detailed information on the individualtree. Further background information can be found in Dralle (1997). The data fromthe forest experiments are introduced in Section 2.1.1.The image analysis leads to an observation of the tree top positions. However, theobservation is not exact as some trees tops are for example lost or moved. The workin this thesis is concentrated on the analysis of such point processes with noise. Twoof the four papers (Lund & Rudemo (1999), Lund et al. (1999)) deal with a model forpoint processes with noise. The model is introduced in Section 2.2. The third paperLund & Thönnes (1999b) does also consider this model, but is primarily interested inperfect simulation from the posterior model used in Lund et al. (1999).Because these methods seem to promise cheap and detailed data from the individualtree it is natural to collect data from the same area over time. In order to use thesedata we need models for the development of trees that take their positions into account.Lund (1998) is one step in this direction as it describes a model for survival times oftrees. The analysis uses the positions of trees through a competition index.1.2 Overview of thesisWe now comment brie�y on the papers, their status, their relation to each other,and the connection with the introductory part of this thesis that may contain furtherremarks. Section 2 and 3 contain introductory material for the papers and elaborate onpossible extensions etc. In order to understand the comments on possible extensionsit is probably necessary to have read the papers �rst. While reading Section 2 andSection 3 it should be quite clear which parts are ment to be read after the papers.Paper 1 Jens Lund and Mats Rudemo (1999), Models for point processes observedwith noise, accepted for publication in Biometrika.This paper develops a model for point processes observed with noise. The focus ison the likelihood function for the observation and maximum likelihood estimation1



2 1 Introductionof the parameters in the model when both the true points and the noisy pointsare observed. Section 2 contains an introduction to the data set considered inthis article and describes the basic model.Paper 2 Jens Lund, Antti Penttinen, and Mats Rudemo (1999), Bayesian analysisof spatial point patterns from noisy observations, submitted.This paper is a natural extension of Lund & Rudemo (1999), and we describea method to analyse the unobserved true points given a noisy observation.We adopt a Bayesian point of view and put a prior distribution on the truepoints. The prior distribution expresses knowledge about the regularity of thetrue points. The posterior distribution is then analysed by dependent samplesoriginating from a Markov chain Monte Carlo algorithm.Paper 3 Jens Lund and Elke Thönnes (1999), Perfect simulation of point patternsfrom noisy observations, manuscript.This manuscript considers perfect simulation of the posterior distribution in Lundet al. (1999). The simulation algorithm used in Paper 2 is approximative in thesense that we are not assured of the convergence of the Markov chain. Thealgorithm considered in this paper is based on the new idea of perfect simulation(Propp & Wilson, 1996), and guarantees that the output sample has exactly thecorrect distribution. Section 3 on page 9 contains further references to perfectsimulation.Unfortunately, the perfect algorithm turns out to be too slow with the priordistributions used in Lund et al. (1999). It is our hope that further investigationwill lead to possible ways to speed up the algorithm.Paper 4 Jens Lund (1999), Survival of the Fattest? Self-thinning among Trees, coursereport.A model for survival times of Sitka spruce based on a discrete time versionof a Cox model is suggested. The positions af all the trees are known, and acompetition index based on neighbours of a tree is used as a covariate to takethe spatial distribution of trees into account. This paper assumes detailed dataon a tree level, that may be obtained by the same procedure that leads to thedata considered in the previous three papers.This paper is a little di�erent from the three previous in style. The paper isoriginally a course report from one of my Ph.D. courses, but the plan is torewrite it into an article.Preliminary manuscript Jens Lund and Elke Thönnes (1999), Perfect adaptiveMetropolis-Hastings Simulation for Point Processes.This manuscript is on perfect simulation of locally stable point processes basedon the Metropolis-Hastings algorithm for simulation of point processes. Veryshortly before I turned in the thesis some problems arised. These problems arediscussed in Section 3.4 of this introductory part and at present it seems to bean open question whether the idea presented in this paper does in fact work ornot. Even if the idea as presented does turn out not to work, then parts of itmight still be used in other contexts.



2 A model for point patterns observed with noiseThis section introduces the model for point processes observed with noise considered inthe papers Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thönnes (1999b).2.1 Examples of point processes observed with noiseWe introduce examples of point processes observed with noise. Section 2.1.1 describesthe dataset used in Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thönnes(1999b), whereas Section 2.1.2 brie�y describes other examples.2.1.1 Aerial photos of Norway spruceThe upper part of Figure 1 shows an aerial photo from a �ight 560m above a thinningexperiment in Norway spruce. The goal is to identify the positions of tree tops in theimage.Larsen (1997) and Larsen & Rudemo (1998) developed a template model for one treetaking into account the positions of the camera and light sources. The resulting tem-plate, shown in the right part of Figure 2 bounded by an ellipse, was moved pixelwiseover the image. Local maxima of the correlation between template and image pixelgrey levels were considered as candidate positions of tree tops. The left part of Figure 2sketches the model for light re�ection within a tree.The lower part of Figure 1 shows a map of the image in the upper part. Both thetrue positions of tree tops (denoted by circles) and the estimated positions as found bythe template matching method (denoted by dots) are shown. Let X = fXi : i 2 Mg,M = f1; : : : ;mg, denote the positions of the true points and let Y = fYj : j 2 Ng,N = f1; : : : ; ng denote the positions found by the template matching method. We wantto estimate the true positions X but do instead observe Y . The template method inLarsen & Rudemo (1998) gives 570 candidate positions for tree tops, but only the 206best candidates are used here. See Lund & Rudemo (1999) for more details.2.1.2 Other examplesPoint processes with noisy observations arise from many other applications. For in-stance, any time the observation is made in an indirect way it must be assumed to benoisy. This can be in image analysis applications as above. Another example could bethe following: We want to observe the positions of the nest of a certain animal. Insteadof the nests themselves we do observe the positions of the animal coming and goingfrom the nest, or traces of the animal like feathers or stools. The Global PositioningSystem (GPS) is also known to have noise in its observations � this noise is evendeliberately larger than technical possible because the military uses this system too.2.2 The basic modelAs noted above, the X and Y point sets are not identical. We can consider Y asa disturbed observation of the true points X, and will now propose a model for theobservation of Y (Lund & Rudemo, 1999). Consider X and Y as point processes on abounded subset A of Rd . 3



4 2 A model for point patterns observed with noise
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Figure 1: Image with sidelighted trees, and, in the lower part, 171 X-points(centres of circles) corresponding to `true' tree tops and 206 Y -points (dots)corresponding to template matching. The area of the delineated subplotis 4 454 m2, and the unit of the axes in the lower part is linear pixel size,0.15 m.



2.2 The basic model 5
Light source

Camera

Tree crownFigure 2: Model tree and, in the right part, template with optimal bound-ing ellipse.Suppose that Y is generated from the X-process by the following disturbance mecha-nisms:(i) Thinning. Each point Xi; i 2 M , is thinned with probability 1 � p(Xi) andretained with probability p(Xi). If an X-point is thinned, then there will not beany corresponding Y -point.(ii) Displacement. For each remaining point Xi a corresponding Y -point is generatedby displacement to a position with probability density k( � jXi) with respect tothe Lebesgue measure on Rd .(iii) Censoring. The displaced points are observed if they are within an observationarea A; otherwise they are censored and not observed. Thus censoring of anunthinned point generated by Xi occurs with probability RAc k(yjXi) dy. (HereAc denotes the complement Rd nA of the set A.) Censoring is mainly a technicalproblem as RAc k(yjXi) dy � 0 in most applications.(iv) Superposition of ghost points. In addition to the points generated as describedabove we have superposition of extra 'ghost' points. These points are assumedto arise from a Poisson process on A with intensity g( � jX), where X, as above,denotes the entire X-process including thinned points.We assume suitable independence relations between the stochastic elements. Thepoints generated from X by the combination of thinning, displacement, censoring andsuperposition form the Y -process, which is thus restricted to the set A.So far I have used a homogeneous thinning probability, p(x) = p, a normal distributionwith mean Xi+� and covariance � as the displacement distribution, and homogeneousPoisson noise g( � jX) = �. Thus, the parameter vector is � = (p; �; �;�).Let jBj denote the number of elements in a �nite set B and let jBjd denote the d-dimensional volume of B when B is a measurable subset of Rd . For two �nite setsM1 and N1 with jM1j = jN1j we let P(M1; N1) denote the set of all bijections � fromM1 to N1. Introduce Sm;n = f(M1; N1; �) : M1 � M = f1; : : : ;mg; N1 � N =f1; : : : ; ng; jM1j = jN1j; � 2 P(M1; N1)g for m;n � 0. In case m = 0 (n = 0)



6 2 A model for point patterns observed with noisewe let M = ; (N = ;) in the de�nition. Further, de�ne S = [1m=0 [1n=0 Sm;n, andprovide S with the �-algebra consisting of all subsets. We let s = (M1; N1; �) 2 Sspecify the correspondence between X- and Y -points and we call s a `matching' withthe interpretation that (Xi; i 2M1) and (Yj ; j 2 N1) consist of matched points. Moreprecisely, Y�(i) is matched to Xi for i 2 M1, that is, Y�(i) is obtained from Xi bydisplacement.De�ne T (X; Y; �; s) = L1 L2 L3 L4for s = (M1; N1; �) whereL1 = pjM1j Yi2M1 k(Y�(i)jXi; �;�);L2 = Yi2MnM1�pZAc k(yjXi; �;�) dy + 1� p� ;L3 = �jNnN1j exp((1� �)jAjd);L4 = 1�s 2 SjXj;jY j� :Here L1 corresponds to unthinned points displaced within A, L2 to thinned points andunthinned points displaced out of A, and L3 to superpositioned `ghost' points. Wehave used the notation 1(�) for the indicator function.Theorem 1 in Lund & Rudemo (1999) states that the likelihood for (X; �) based onthe observation Y is L(Y jX; �) =Xs2S T (X; Y; �; s); (1)with the reference measure taken as the Poisson process with intensity 1 on the set A.One should note that the sum typically contains a very large number of non-zero termsbut the number of leading terms may be small and thus approximations are possible.We also consider the joint likelihood of the point processes Y and the matching s givenby L(Y; sjX; �) = T (X; Y; �; s); (2)with the reference measure taken as the product of the measure of a Poisson process onA with intensity 1 and the counting measure on S. The relation between (1) and (2)is that (1) is the marginal distribution of the point process Y in (2). The matchings is unobserved and thus (2) could be considered as a missing data model (Smith &Roberts, 1993, Sec. 6). This approach is used in Lund et al. (1999) and could be usedin Lund & Rudemo (1999) in alternative estimation algorithms.A natural extension of the above setup is to associate a mark with each observed pointYj. The mark should express knowledge about the belief in the point at that mark. Inthe analysis of the image data considered in Lund & Rudemo (1999) the mark couldbe the correlation between the template and the image. Currently this information isignored, but the analysis could be improved when such a mark is available.2.3 Interesting questionsThe basic questions of estimation of the parameter � and reconstruction of X aretreated in Lund & Rudemo (1999) and Lund et al. (1999), respectively, and are intro-duced in the following sections 2.3.1 and 2.3.2.



2.4 Extensions to several observations of a point process 72.3.1 Estimation of parametersEstimation of the parameter � in the model (1) is di�cult due to the very large numberof terms in in the sum. The sum is over all possible ways to pair X and Y points. Weestimate the parameters in the model in case both X and Y is observed. Further, wesuggest an approximate likelihood analysis based on the concept of �neighbours� to amatching s. A neighbour of a matching s is a matching s0 which is very similar to s.The crucial issue in the approximate likelihood computation is to �nd matches s =(M1; N1; �) such that the corresponding terms give large contributions to (1), and thenfocus on only a small number of terms. This is achieved by a deterministically, iterativealgorithm consisting of a starting procedure for �nding an initial set of matches andlocal maximizations over suitably chosen neighbourhoods of matches until no furtherimprovement is obtained.2.3.2 Reconstruction of a disturbed point patternThe idea is to use the model (1) to reconstruct X when the parameter � = (p; �; �;�)is known and we have a noisy observation Y . The knowledge of the parameter cane.g. be obtained through training data sets observed under similar conditions as thecurrent data.Similar problems are found in Baddeley & van Lieshout (1993) which consider a pointprocess description of an image and cluster center estimation in a clustered pointpattern. Cressie & Lawson (1998) and Dasgupta & Raftery (1998) are about detectionof mines in mine�elds and are also similar.We use a Bayesian approach and have a prior distribution L(X) on X. The priordistribution gives regular point patterns, and it expresses that trees in planted andmanaged forests (as our images) tend to be placed regularly in the area.The posterior distribution for the true points is L(XjY; �) / L(Y jX; �)L(X). Weexplore this posterior distribution by Markov chain Monte Carlo (MCMC) samplesfrom the distribution. We make a sampler of Metropolis-Hasting type along the linesin Geyer & Møller (1994), Geyer (1999), and Green (1995). In order to avoid the hugesum in (1) we consider the matching s as missing information here and we simulateboth the true point positions X and the unobserved matching s. The expression for theposterior distribution is L(X; sjY; �) / L(Y; sjX; �)L(X) which is easy to compute.2.4 Extensions to several observations of a point processAn extension of Section 2.3.2 and Lund et al. (1999) is the situation with severalindependent noisy observations of the same point pattern. The likelihood is easilyfound by multiplying the likelihoods for the individual observations, but the MCMCalgorithm needs to be extended compared to Lund et al. (1999). A further complicationis that points belonging to di�erent observations should also somehow be matched.We could improve the analysis of the forest data described in Section 2.1.1 by includingseveral images taken from di�erent postions compared to the ground and the sun. Thenit is natural to estimate the true positions X = fX1; : : : ;Xmg in three-dimensionalreal world coordinates, and a problem is that each image just has a two-dimensionalobservation of the tree tops. Instead of extending the above model for point processesobserved with noise to this setup I outline another way to do this analysis. It combines



8 2 A model for point patterns observed with noisethe image analysis and point process analysis steps into one analysis. This has theadvantage of utilizing the information in the images better, but will on the other handbe more tailored to this speci�c problem. The analysis combines ingredients from theabove analysis as well as Baddeley & van Lieshout (1993) and van Lieshout (1994).Let X = fX1; : : : ; Xmg be the three-dimensional coordinates of the tree tops to beestimated and assume that we have observed q images Z1; : : : ; Zq with independentnoise. For each image Zk there is a function fk that transforms a three-dimensionalpoint Xi into two-dimensional image coordinates fk(Xi).For each of the q images we make an arti�cial image given the X points. On top ofeach of the positions fk(X1); : : : ; fk(Xm) we put a template for the image like the onein Figure 2. The template models the mean image around a tree top. At this stagewe must decide how to model the mean image outside the templates and what to do ifthe templates overlap because the tree tops are close together. One solution could beto use a constant mean image outside the templates and favour the template for thetree closest to the camera.Based on these �mean images� we can write a likelihood L(ZkjX) for each image. Itwould be preferable if this likelihood allowed for the possibility of loosing a tree inthe image by a certain probability, say 1 � pk, and allowed for a small movement ofthe template at position fk(Xi). The movement is necessary because the fk functionsare �xed and the Xi positions are common for all the images so some disturbanceshould be allowed. We multiply the likelihoods for each image to obtain a likelihoodL(ZjX) =Qqk=1 L(ZkjX) for the sequence of images.We could now proceed similar to the analysis in Section 2.3.2. Put a prior L(X) on thethree-dimensional X-coordinates and investigate the posterior distribution L(XjZ) /L(ZjX)L(X) of the positions given the images. Some kind of Markov chain samplingfrom the positions will probably be involved here.I would expect this idea to work reasonable well with 3�4 images. However, the abovedescription is just an outline and quite some details must be �lled in for this idea towork smoothly.2.5 Extensions to development in timeThe data collection method described in the previous sections is easily applied to thesame area over time. This give us detailed information on the development of eachindividual tree. If we have obtained the positions of the tree tops in real world three-dimensional coordinates as described in Section 2.4 we get information on the groundposition of each tree and the growth of the tree between measurements. This increasesthe use of models for the competition between trees that take their positions intoaccount. Lund (1998) describe one such model for the survival times of Sitka spruce.



3 Perfect simulation of point processes3.1 IntroductionPropp & Wilson (1996) started a new area of probability theory called perfect simula-tion. The basic goal is to simulate from a target distribution � by designing a Markovchain Xt that has � as its stationary distribution and then monitor the convergence ofthe chain. Methods for designing Markov chains with � as its stationary distributionhave existed for a long time, see e.g. Gilks et al. (1996) for an overview. Propp &Wilson (1996) contributed a new method of monitoring convergence of the Markovchain such that the output is known to come from � exactly. Previously the Markovchain Xt was run for a long time until it was believed to be su�ciently close to station-arity. Even though theoretical results on convergence are possible, for instance for theMetropolis-Hastings sampler for points processes (Geyer & Møller, 1994), they may beof little practical use (Geyer, 1999, Section 3.8). An introduction to this new methodcalled Coupling From The Past (CFTP) can be found in Lund & Thönnes (1999b, Sec-tion 4) in this thesis. The recent overview papers Thönnes (1999) and Dimakos (1999)give a more thorough introduction than contained in Lund & Thönnes (1999b). A fullannotated and updated bibliography on the area of perfect simulation can be found onDavid Wilsons homepage, http://dimacs.rutgers.edu/�dbwilson/exact.html/.3.2 Perfect simulation papers in this thesisThis thesis contains two manuscripts on perfect simulation. Lund & Thönnes (1999a)tries to develop a new perfect simulation algorithm for locally stable point processesbased on Metropolis-Hastings simulation of point processes (Geyer & Møller, 1994).This algorithm would be conceptually simpler than the algorithm described in Kendall& Møller (1999). However, some open questions still remain unsolved as discussed inthe following Section 3.4. The paper Lund & Thönnes (1999b) develops a perfectsimulation algorithm for the posterior distribution of the true unobserved points inthe reconstruction problem in Section 2.3.2.Perfect simulation of locally stable point processes is considered in Kendall & Møller(1999). They describe two methods based on spatial birth-and-death processes andMetropolis-Hastings simulation, respectively � the former being much simpler thanthe latter.The perfect simulation algorithm in Lund & Thönnes (1999b) is based on spatial birth-and-death processes whereas the non-perfect algorithm used in Lund et al. (1999) isbased on Metropolis-Hastings simulation. One di�erence between the two approaches,apart from the perfect simulation aspect, is the following. To use the Metropolis-Hastings simulation algorithm we must be able to compute RAc k(yjXi; �;�) dy whereasthe spatial birth-and-death algorithm just requires us to be able to make a coin �ipthat has probability RAc k(yjXi; �;�) dy of heads. In the Metropolis-Hastings set-ting the value of RAc k(yjXi; �;�) dy is required to make a coin �ip with probabil-ity � = min(1; RAc k(yjXi; �;�) dy � a factor) of heads and it is impossible to dothe �-coin �ip without knowing the value of RAc k(yjXi; �;�) dy. The approximationRAc k(yjXi; �;�) dy = 0 is used in Lund et al. (1999) to avoid the calculation of theintegral. 9



10 3 Perfect simulation of point processes3.3 Rejection samplingThe rejection sampling method is a well-known method to generate samples froma target distribution � with unnormalized density f on a space 
 equipped with asuitable �-algebra and a reference measure 
. We will repeat it here because it issimple, because we can demonstrate how to do rejection sampling for the problemin Lund & Thönnes (1999b), and because some of the perfect simulation algorithmsare clever applications of rejection sampling (Fill, 1998; Fill et al., 1999).Assume that we have another distribution � with unnormalized density g on the samespace, and that we are able to simulate easily from �. Assume further that g dominatesf such that f(x) � g(x) for all x 2 
. The distribution � is called the proposaldistribution.Rejection sampling:Simulate X according to �. Accept X with probability f(X)=g(X). If X is not accepted,then simulate a new X and continue until the simulated X is accepted. The returnedsample is distributed according to �.It can easily be seen from the following simple lemma that this procedure returns asample from the target distribution �.Lemma If X is distributed according to � and U is distributed uniformly on [0; g(X)]given X then (X;U) is uniformly distributed on f(x; u) 2 
� [0;1[ : 0 � u � g(x)g.If (X;U) is uniformly distributed on f(x; u) 2 
� [0;1[ : 0 � u � f(x)g then X hasmarginal distribution �.The uniform distribution on a subset of 
� [0;1[ means the distribution with densityequal to a constant times the indicator function of the set with respect to the productmeasure 
 
 l where l is the Lebesgue measue on R.With the notation from Lund & Thönnes (1999b) we can now describe how to generatea perfect sample from the posterior distribution of the true points given the noisyobservation in the problem of Section 2.3.2. The proposal distribution is the stationarydistribution of the dominating chain, described in Section 5.1 of the paper, conditionedto have at most one X-point matched to each Y -point. It is easy to sample from thisdistribution as it is basically a Poisson process and the result of the conditioning canbe stated explicitly. This sample is then accepted by probability L(X)= (�?)n(X).The problem with rejection sampling in this particular example is that it is too slowto be useful, that is the number of rejections before acceptance is too high. In generalanother complication that prevents us from using rejection sampling is that we cannot�nd a suitable proposal distribution with a dominating density.3.4 Convergence of the target process?This section is intended to be read after Section 1 up to and including Section 5.2in Lund & Thönnes (1999a) have been read. Shortly before submission of this thesisJesper Møller pointed out to me our construction in Section 5 of Lund & Thönnes(1999a) had to be carefully checked. To be more precise, the convergence of X to thecorrect equilibrium distribution had to be proven rigorously. In order for the algorithmin Lund & Thönnes (1999a) to work, we need that the target chain X, coupled to thedominating chain Z, marginally converges in distribution to the target distribution �(Kendall & Møller, 1999, Theorem 3.1). At present there is no rigorous prove for the



3.4 Convergence of the target process? 11convergence of X. What follows is a discussion on a more abstract level than in Lund& Thönnes (1999a) of the requirements needed to ensure convergence of the targetchain X de�ned in the paper. The reader should be able to follow this section withouthaving to read the paper.Let 
 be the state space of Z and X. Assume that 
 has a partial order �, and hasa state called 0 and a reference measure 
. The special state 0 is a minimal elementin 
, that is 0 � z for any z 2 
.In our setting 
 is the point process state-space, all �nite subsets of a set C � R2 , whereC is bounded and Borel. The minimal state is the empty point con�guration, 0 = ;.The reference measure 
 is the Poisson process at unit rate and the partial orderingis the set inclusion. The transition kernels for Markov chains we use are Metropolis-Hastings kernels for the sampling of point processes (Geyer & Møller, 1994; Geyer,1999).Assume that Z = (Z1; Z2; : : : ) is a stationary, time-reversible, Markov chain withinvariant distribution �. Suppose Z1 is distributed according to �. We assume that Zevolves according to a transition kernel Qz(A) = RA q(z; y) d
(y) which is aperiodic,irreducible, and positive Harris recurrent. The state 0 2 
 is an ergodic atom for Z,that is the probability of Z visiting 0 in the time interval [0; t] tends to 1 as t!1.Let P z be a family of Markov kernels on 
. The family is indexed by a value z 2 
and has density p, P zx (B) = RB pz(x; y) d
(y). Suppose that for each �xed z 2 
 thekernel P z de�nes an aperiodic, irreducible, and positive Harris recurrent Markov chainwith invariant distribution �. Thus the n-step transition kernel based on P z convergesto � as n!1 (Geyer, 1999).Let X = (X1; X2; : : : ) be a process de�ned in the following way. Let X1 = x be adetermistic starting state. In order to get from Xt = xt to Xt+1 choose Xt+1 accordingto the distribution PZtxt ( � ).In our speci�c setting we couple the update of Xt according to PZtxt ( � ) to Z such thatXt+1 � Zt+1.Conjecture The marginal distribution of Xt converges weakly to � as t!1.We now give an outline of a proof with comments on the parts still to be shown.Proof: Due to the dependence on Z the X chain is not a Markov chain. Instead weconsider the joint distribution of Z and X and (Zt; Xt) is a Markov chain.Consider the Markov kernel Rz;x(A � B) = Qz(A)P zx (B) which has the invariantdistribution � 
 �. In order for this to be the only invariant distribution we needirreducibility of Rz;x. However, the (Z;X) chain described above does not evolveaccording to Rz;x. We have a coupling of Z and X such that (Z;X) lives on ~
2 =f(z; x) 2 
�
 : x � zg. This (Z;X) chain evolves according to a kernel ~Rz;x and therelation between ~Rz;x and Rz;x is that they agree on the marginal distributions. Thatis ~Rz;x(A� 
) = Qz(A) = Rz;x(A� 
) and ~Rz;x(
�B) = P zx (B) = Rz;x(
�B).~Rz;x de�nes a irreducible, aperiodic, positive Harris recurrent chain such that an invari-ant distribution with density f exists. Furthermore, the (Z;X) chain evolving accord-ing to ~Rz;x converges towards this distribution which must have support ~
2 � 
�
.Now, the idea is to show that the marginal stationary distribution of X, f(x) =R
 f(z; x) d
(z), is �. Further, let f(zjx) denote the conditional density of Z givenX = x for the stationary distribution.



12 3 Perfect simulation of point processesBecause f is invariant for ~Rz;x we know thatZ
�
 f(z; x) ~Rz;x(A�B) d(
 � 
)(z; x) = ZA�B f(z; x) d(
 � 
)(z; x):With A�B = 
�B we getZ
�
 f(z; x)P zx (B) d(
 � 
)(z; x) = ZB f(x) d
(x);and if we write f(z; x) = f(x)f(zjx) we getZ
 f(x)Z
 f(zjx)P zx (B) d
(z) d
(x) = ZB f(x) d
(x):It is seen that the stationary distribution f of ~Rz;x has the marginal distributionR
 f(z; x) d
(z) = �(x) if and only if � is invariant for the transition kernel ~Px de�nedby ~Px(B) = Z
 f(zjx)P zx (B) d
(z):Whether � is invariant for ~Px or not is still an open question. 2It is obvious that � is invariant for ~Px if (i) Z and X are independent in f or if (ii)P zx does not depend on z. The �rst case means that we have no coupling between Zand X and they evolve according to Rz;x, and the second case means that X evolvesas a Markov chain in itself. Neither of these cases applies here.The kernel ~Px is a form of what Geyer (1999) call �state dependent mixing�. Instate dependent mixing a transition kernel is chosen according to a distribution whichdepends on the current state of the chain. However, if the target stationary distributionis invariant for each transition kernel this does not imply the invariance for the mixturetransition kernel as pointed out in Geyer (1999, Section 3.4.2). Properties speci�c toour problem must be used to prove the conjecture or adjust ~Px to ensure that it has� as the stationary distribution.
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