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Summary

The main themes of this thesis are spatial statistics and simulation algorithms. The
thesis is split into five papers that may be read independently. All five papers deal
with spatial models. Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thonnes
(19990) deal with the same new model for point processes observed with noise, and
Lund et al. (1999), Lund & Thonnes (1999b6), and Lund & Thonnes (1999a) has a
simulation aspect.

Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thonnes (19995) develop
and analyse a new model for point processes observed with noise. Usually the anal-
ysis of spatial point patterns assume that the observed points (the true points) are
a realization from a specific model. In contrast our approach is to assume the ob-
served pattern generated by thinning and displacement of the true points, and allow
for contamination by points not belonging to the true pattern.

Lund & Rudemo (1999) develop the model for point processes observed with noise.
The likelihood function for an observation of a noise corrupted point pattern given
the true positions is derived. As data for our analysis is indeed a realization of the
underlying true process and its associated noise corrupted point pattern we need not
consider a model for the underlying process. The parameters in the model describe
how many of the true points are lost, how large the displacements are, and the number
of contaminating surplus points. For estimation of the parameters in the noise model a
deterministic, iterative, and approximative maximum likelihood estimation algorithm
is developed. The likelihood function is a sum of an excessive large number of terms,
and the algorithm works by finding large dominating terms. Alternative estimation
methods are discussed.

Lund et al. (1999) analyse the model developed in Lund & Rudemo (1999) with respect
to the now unobserved true points. We assume a noisy observation of a true point
pattern and knowledge of the parameters in the model. A Bayesian point of view
is now adopted and we specify a prior distribution for the underlying true process.
Given the model, the prior distribution, and the noisy observation, we get the posterior
distribution of the true points. This posterior distribution is investigated by samples
from the distribution. These samples are obtained from a Markov chain Monte Carlo
(MCMC) algorithm extending the Metropolis-Hastings sampler for point processes. A
thorough discussion is provided on the choice of prior distribution and how to present
the samples from the MCMC runs. The MCMC samples are used to estimate for
example the K-function for the unobserved true point pattern. These estimates are
clearly better than estimates based on the observed points alone.

The use of the MCMC algorithm in Lund et al. (1999) relies on the fact that a Markov
chain run for a long time approaches its stationary distribution. Lund & Thdonnes
(1999b) uses a recent technique called Coupling From The Past (CFTP) to deliver
a sample drawn from the exact posterior distribution of the unobserved true points
described in Lund et al. (1999), a so-called perfect simulation. This perfect simulation
algorithm is based on spatial birth-and-death processes for simulation of point pro-
cesses. In order to apply CFTP in our problem the simulation is carried out on an
augmented state space. The algorithm turns out to be too slow in practice and thus
demonstrates possible current limits of CFTP.

Lund & Thonnes (1999a) describes a new perfect simulation algorithm for general lo-
cally stable point processes. The algorithm is based on CF'TP for Metropolis-Hastings
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simulation of point processes and it is simpler than the previous known perfect algo-
rithm based on Metropolis-Hastings simulation for this class of models. The present
state of the algorithm is that it is far too slow to be useful in practice, and it might
have some theoretical flaws. These problems are discussed in the introductory part of
the thesis.

Lund (1998) develops a model for survival times of trees that take the spatial positions
of the trees into account. At a finite number of timepoints it is observed whether a
tree is alive or not, and thus we have interval censoring of the even aged trees. The
model is a discrete time version of Cox’s proportional hazards model. Positions of
trees are considered as fixed, and they are used to compute competition indices that
enter the model as covariates. It is shown that small trees have a higher risk of dying
than large tress and the area of the experiment is inhomogeneous. In addition, Hegyi’s
competition index based on basal area is a significant covariate.



Dansk resumé

Hovedemnerne for denne afthandling er rumlig statistik og simuleringsalgoritmer. Af-
handlingen bestar af fem artikler, der kan laeses uathaengigt. Alle fem artikler omhand-
ler rumlig statistik. Lund & Rudemo (1999), Lund et al. (1999) og Lund & Thonnes
(1999b) omhandler den samme nye model for punktprocesser observeret med stgj,
mens Lund et al. (1999), Lund & Thoénnes (1999b), samt Lund & Thonnes (1999a)
indeholder simuleringsaspekter.

Lund & Rudemo (1999), Lund et al. (1999) og Lund & Thonnes (19996) udvikler
og analyserer en ny model for punktprocesser observeret med stgj. Normalt antages i
analysen af rumlige punktprocesser at de observerede punkter (de sande punkter) er en
realisation fra en bestemt model. Vi antager, at de observerede punkter er fremkommet
ved tynding og flytning af sande punkter, samt at punkter der ikke tilhgrer det sande
punktmegnster kan vaere tilfgjet.

Lund & Rudemo (1999) beskriver modellen for punktprocesser observeret med stgj,
og likelihoodfunktionen for en stgjfyldt observation, givet det sande punktmgnster,
udledes. Data for analysen er en realisation af et sandt punktmgnster og en tilhgrende
stgjfyldt observation, hvorfor en model for de sande punkter ikke er ngdvendig. Para-
metrene i modellen beskriver sandsynligheden for at miste et sandt punkt, stgrrelsen
af flytningerne og antallet af ekstra punkter. Til estimation af parametrene i stgj-
modellen udvikles en deterministisk, iterativ, og approksimativ maksimum likelihood
estimationsalgoritme. Likelihoodfunktionen er en sum af et meget stort antal led og
algoritmen finder de storste af disse. Alternative estimationsmetoder diskuteres.

Lund et al. (1999) analyserer modellen udviklet i Lund & Rudemo (1999) mht. til de nu
uobserverede sande punkter. Vi har en stgjfyldt observation af det sande punktmgns-
ter og kendskab til parametrene i modellen. Fra en Bayesiansk synsvinkel specificeres
nu en a priori fordeling for den underliggende sande process. Med modellen, a priori
fordelingen, og den stgjfyldte observation far vi a posteriori fordelingen for de sande
punkter. Denne a posteriori fordeling beskrives med simulerede udfald fra fordelingen.
Udfaldene fas fra en Markovkaede med a posterior: fordelingen som stationger fordeling
og den er designet som en udvidelse af Metropolis-Hastings algoritmen for punktpro-
cesser. Der er en grundig diskussion af valget af a priori fordeling og hvordan udfaldene
fra a posteriori fordelingen bedst praesenteres. Udfaldene bruges bl.a. til estimation af
K-funktionen for det uobserverede sande punktmgnster. Disse estimater er klart bedre
end estimater baseret alene pa den stgjfyldte observation.

Markovkaede-algoritmen i Lund et al. (1999) benytter at en Markovkaede udviklet i
mange trin neermer sig sin stationaere fordeling. Lund & Thonnes (1999b) bruger den
nye teknik kobling fra fortiden (Coupling From The Past, CFTP) til at generere udfald
fra a posteriori fordelingen af de uobserverede punkter uden approksimationer, en
sékaldt perfekt simulering. Denne perfekte simuleringsalgoritme er baseret pa rumlige
fgdsels- og dgdsprocesser for punktprocesser. For at bruge kobling fra fortiden i vores
problem udfgres simulationen pa et udvidet tilstandsrum. Algoritmen viser sig at vaere
for langsom i praksis og demonstrerer siledes mulige nuvaerende begransninger ved
kobling fra fortiden.

Lund & Thonnes (1999a) udvikler en ny perfekt simuleringsalgoritme for generelle lo-
kalt stabile punktprocesser. Algoritmen er baseret pa kobling fra fortiden af Metropolis-
Hastings simulering af punktprocesser og er simplere end den tidligere kendte tilsvar-
ende algoritme. For nuvarende er algoritmen alt for langsom i praksis og den kan have
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teoretiske fejl. Disse problemer er diskuteret i den indledende del af athandlingen.

Lund (1998) udvikler en model for levetider af treeer der tager hgjde for de rumlige
positioner af traeerne. P& et endeligt antal tidspunkter er det observeret, om et givent
trae er i live eller ej, og vi har sdledes intervalcensur af de ensaldrende traeer. Modellen
er en diskret-tids version af Cox’s model for proportionale intensiteter. Positionerne
af traeerne opfattes som givne og de bruges til beregning af konkurrenceindex, der
indgar som kovariater i modellen. Det vises at sméa tracer har en hgjere dgdelighed end
store traeer, og at forspgsomradet er inhomogent. Hegyi’s konkurrenceindex baseret pa
grundfladen viser sig at veere en signifikant kovariat.
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1 Introduction

This thesis contains the introductory sections 1-3, the four papers Lund & Rudemo
(1999), Lund et al. (1999), Lund & Thonnes (1999b), Lund (1998), as well as the
preliminary manuscript Lund & Thonnes (1999a). The papers consitute the main
part of the thesis. In this Section 1 we introduce the background for the thesis and
give brief comments on the content of the papers and their relation to Section 2 and
Section 3.

1.1 A bit of history

This project started as a continuation of the Ph.D. thesis Dralle (1997) (especially
Dralle & Rudemo (1996) and Dralle & Rudemo (1997)). The fundamental idea in the
project and the work of Larsen (1997) and Larsen & Rudemo (1998) is to identify tree
tops in aerial photos of Norway spruce.

In forestry there is a wish to get information about the number and volume of trees
in the forest, as well as the positions of the trees. This will help management and
planning of the forest. So far, the expenses in terms of working hours and money to
obtain this information has prevented a detailed inventory. Analysis of aerial photos
seem to promise a less expensive way to get detailed information on the individual
tree. Further background information can be found in Dralle (1997). The data from
the forest experiments are introduced in Section 2.1.1.

The image analysis leads to an observation of the tree top positions. However, the
observation is not exact as some trees tops are for example lost or moved. The work
in this thesis is concentrated on the analysis of such point processes with noise. Two
of the four papers (Lund & Rudemo (1999), Lund et al. (1999)) deal with a model for
point processes with noise. The model is introduced in Section 2.2. The third paper
Lund & Thonnes (19995) does also consider this model, but is primarily interested in
perfect simulation from the posterior model used in Lund et al. (1999).

Because these methods seem to promise cheap and detailed data from the individual
tree it is natural to collect data from the same area over time. In order to use these
data we need models for the development of trees that take their positions into account.
Lund (1998) is one step in this direction as it describes a model for survival times of
trees. The analysis uses the positions of trees through a competition index.

1.2 Overview of thesis

We now comment briefly on the papers, their status, their relation to each other,
and the connection with the introductory part of this thesis that may contain further
remarks. Section 2 and 3 contain introductory material for the papers and elaborate on
possible extensions etc. In order to understand the comments on possible extensions
it is probably necessary to have read the papers first. While reading Section 2 and
Section 3 it should be quite clear which parts are ment to be read after the papers.

Paper 1 Jens Lund and Mats Rudemo (1999), Models for point processes observed
with noise, accepted for publication in Biometrika.

This paper develops a model for point processes observed with noise. The focus is
on the likelihood function for the observation and maximum likelihood estimation



1 Introduction

of the parameters in the model when both the true points and the noisy points
are observed. Section 2 contains an introduction to the data set considered in
this article and describes the basic model.

Paper 2 Jens Lund, Antti Penttinen, and Mats Rudemo (1999), Bayesian analysis
of spatial point patterns from noisy observations, submitted.

This paper is a natural extension of Lund & Rudemo (1999), and we describe
a method to analyse the unobserved true points given a noisy observation.
We adopt a Bayesian point of view and put a prior distribution on the true
points. The prior distribution expresses knowledge about the regularity of the
true points. The posterior distribution is then analysed by dependent samples
originating from a Markov chain Monte Carlo algorithm.

Paper 3 Jens Lund and Elke Thonnes (1999), Perfect simulation of point patterns
from noisy observations, manuscript.

This manuscript considers perfect simulation of the posterior distribution in Lund
et al. (1999). The simulation algorithm used in Paper 2 is approximative in the
sense that we are not assured of the convergence of the Markov chain. The
algorithm considered in this paper is based on the new idea of perfect simulation
(Propp & Wilson, 1996), and guarantees that the output sample has exactly the
correct distribution. Section 3 on page 9 contains further references to perfect
simulation.

Unfortunately, the perfect algorithm turns out to be too slow with the prior
distributions used in Lund et al. (1999). It is our hope that further investigation
will lead to possible ways to speed up the algorithm.

Paper 4 Jens Lund (1999), Survival of the Fattest? Self-thinning among Trees, course
report.

A model for survival times of Sitka spruce based on a discrete time version
of a Cox model is suggested. The positions af all the trees are known, and a
competition index based on neighbours of a tree is used as a covariate to take
the spatial distribution of trees into account. This paper assumes detailed data
on a tree level, that may be obtained by the same procedure that leads to the
data considered in the previous three papers.

This paper is a little different from the three previous in style. The paper is
originally a course report from one of my Ph.D. courses, but the plan is to
rewrite it into an article.

Preliminary manuscript Jens Lund and Elke Thonnes (1999), Perfect adaptive
Metropolis-Hastings Simulation for Point Processes.

This manuscript is on perfect simulation of locally stable point processes based
on the Metropolis-Hastings algorithm for simulation of point processes. Very
shortly before I turned in the thesis some problems arised. These problems are
discussed in Section 3.4 of this introductory part and at present it seems to be
an open question whether the idea presented in this paper does in fact work or
not. Even if the idea as presented does turn out not to work, then parts of it
might still be used in other contexts.



2 A model for point patterns observed with noise

This section introduces the model for point processes observed with noise considered in
the papers Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thonnes (19995).

2.1 Examples of point processes observed with noise

We introduce examples of point processes observed with noise. Section 2.1.1 describes
the dataset used in Lund & Rudemo (1999), Lund et al. (1999), and Lund & Thonnes
(1999b), whereas Section 2.1.2 briefly describes other examples.

2.1.1 Aerial photos of Norway spruce

The upper part of Figure 1 shows an aerial photo from a flight 560m above a thinning
experiment in Norway spruce. The goal is to identify the positions of tree tops in the
image.

Larsen (1997) and Larsen & Rudemo (1998) developed a template model for one tree
taking into account the positions of the camera and light sources. The resulting tem-
plate, shown in the right part of Figure 2 bounded by an ellipse, was moved pixelwise
over the image. Local maxima of the correlation between template and image pixel
grey levels were considered as candidate positions of tree tops. The left part of Figure 2
sketches the model for light reflection within a tree.

The lower part of Figure 1 shows a map of the image in the upper part. Both the
true positions of tree tops (denoted by circles) and the estimated positions as found by
the template matching method (denoted by dots) are shown. Let X = {X; :i € M},
M = {1,...,m}, denote the positions of the true points and let ¥ = {Y; : j € N},
N ={1,...,n} denote the positions found by the template matching method. We want
to estimate the true positions X but do instead observe Y. The template method in
Larsen & Rudemo (1998) gives 570 candidate positions for tree tops, but only the 206
best candidates are used here. See Lund & Rudemo (1999) for more details.

2.1.2 Other examples

Point processes with noisy observations arise from many other applications. For in-
stance, any time the observation is made in an indirect way it must be assumed to be
noisy. This can be in image analysis applications as above. Another example could be
the following: We want to observe the positions of the nest of a certain animal. Instead
of the nests themselves we do observe the positions of the animal coming and going
from the nest, or traces of the animal like feathers or stools. The Global Positioning
System (GPS) is also known to have noise in its observations — this noise is even
deliberately larger than technical possible because the military uses this system too.

2.2 The basic model

As noted above, the X and Y point sets are not identical. We can consider Y as
a disturbed observation of the true points X, and will now propose a model for the
observation of Y (Lund & Rudemo, 1999). Consider X and Y as point processes on a
bounded subset A of R%.
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500 — O 171 'true’ tree tops
* 206 candidates
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Figure 1: Image with sidelighted trees, and, in the lower part, 171 X-points
(centres of circles) corresponding to ‘true’ tree tops and 206 Y-points (dots)
corresponding to template matching. The area of the delineated subplot
is 4454 m?, and the unit of the axes in the lower part is linear pixel size,
0.15 m.



2.2 The basic model

N

Light source ;/ o

Tree crown

Figure 2: Model tree and, in the right part, template with optimal bound-
ing ellipse.

Suppose that Y is generated from the X-process by the following disturbance mecha-
nisms:

(i) Thinning. Each point X;,7 € M, is thinned with probability 1 — p(X;) and
retained with probability p(X;). If an X-point is thinned, then there will not be
any corresponding Y -point.

(i1) Displacement. For each remaining point X; a corresponding Y-point is generated
by displacement to a position with probability density k(-|X;) with respect to
the Lebesgue measure on R?.

(iii) Censoring. The displaced points are observed if they are within an observation
area A; otherwise they are censored and not observed. Thus censoring of an
unthinned point generated by X; occurs with probability [,. k(y|X;) dy. (Here
A¢ denotes the complement R? \ A of the set A.) Censoring is mainly a technical
problem as [, k(y|X;) dy = 0 in most applications.

(iv) Superposition of ghost points. In addition to the points generated as described
above we have superposition of extra 'ghost’ points. These points are assumed
to arise from a Poisson process on A with intensity g(-|X), where X, as above,
denotes the entire X-process including thinned points.

We assume suitable independence relations between the stochastic elements. The
points generated from X by the combination of thinning, displacement, censoring and
superposition form the Y-process, which is thus restricted to the set A.

So far I have used a homogeneous thinning probability, p(z) = p, a normal distribution
with mean X+ p and covariance X as the displacement distribution, and homogeneous
Poisson noise g(-|X) = A. Thus, the parameter vector is § = (p, A\, i, ).

Let |B| denote the number of elements in a finite set B and let |B|g denote the d-
dimensional volume of B when B is a measurable subset of R?. For two finite sets
M, and N; with |M;| = |Ny| we let P(M;, N1) denote the set of all bijections 7 from
M1 to Nl. Introduce Sm,n = {(Ml,Nl,Tr) : M1 g M = {1,...,m}, N1 g N =
{1,...,n}, |Mi| = |Ny|, # € P(M;,Ny)} for myn > 0. In case m = 0 (n = 0)
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we let M = ( (N = 0) in the definition. Further, define S = UX_, U, Sy, pn, and
provide S with the o-algebra consisting of all subsets. We let s = (My, Ny, 7) € S
specify the correspondence between X- and Y-points and we call s a ‘matching’” with
the interpretation that (X;,i € M;) and (Y},5 € Ny) consist of matched points. More
precisely, Y (;) is matched to X; for i € My, that is, Y is obtained from X; by
displacement.

Define
T(X, Y, 9, S) = L1 L2 L3 L4

for s = (M, N1, ) where

Ly = p™I T ko)) Xis 1, ),
i€ My

i€ M\M; A
Ly = NM\Wlexp((1 — V)| Alg),
Ly = 1(3 S S|XMY|) .

Here Ly corresponds to unthinned points displaced within A, Lo to thinned points and
unthinned points displaced out of A, and L3 to superpositioned ‘ghost’ points. We
have used the notation 1(-) for the indicator function.

Theorem 1 in Lund & Rudemo (1999) states that the likelihood for (X, #) based on
the observation Y is

L(Y|X,0)=> T(X,Y,0,s), (1)

seS
with the reference measure taken as the Poisson process with intensity 1 on the set A.
One should note that the sum typically contains a very large number of non-zero terms
but the number of leading terms may be small and thus approximations are possible.

We also consider the joint likelihood of the point processes Y and the matching s given
by

L(Y,s|X,0) =T(X,Y,0,s), (2)

with the reference measure taken as the product of the measure of a Poisson process on
A with intensity 1 and the counting measure on S. The relation between (1) and (2)
is that (1) is the marginal distribution of the point process Y in (2). The matching
s is unobserved and thus (2) could be considered as a missing data model (Smith &
Roberts, 1993, Sec. 6). This approach is used in Lund et al. (1999) and could be used
in Lund & Rudemo (1999) in alternative estimation algorithms.

A natural extension of the above setup is to associate a mark with each observed point
Y;. The mark should express knowledge about the belief in the point at that mark. In
the analysis of the image data considered in Lund & Rudemo (1999) the mark could
be the correlation between the template and the image. Currently this information is
ignored, but the analysis could be improved when such a mark is available.

2.3 Interesting questions

The basic questions of estimation of the parameter # and reconstruction of X are
treated in Lund & Rudemo (1999) and Lund et al. (1999), respectively, and are intro-
duced in the following sections 2.3.1 and 2.3.2.



2.4 Extensions to several observations of a point process

2.3.1 Estimation of parameters

Estimation of the parameter € in the model (1) is difficult due to the very large number
of terms in in the sum. The sum is over all possible ways to pair X and Y points. We
estimate the parameters in the model in case both X and Y is observed. Further, we
suggest an approximate likelihood analysis based on the concept of “neighbours” to a
matching s. A neighbour of a matching s is a matching s’ which is very similar to s.
The crucial issue in the approximate likelihood computation is to find matches s =
(Mj, Ny, ) such that the corresponding terms give large contributions to (1), and then
focus on only a small number of terms. This is achieved by a deterministically, iterative
algorithm consisting of a starting procedure for finding an initial set of matches and
local maximizations over suitably chosen neighbourhoods of matches until no further
improvement is obtained.

2.3.2 Reconstruction of a disturbed point pattern

The idea is to use the model (1) to reconstruct X when the parameter 8 = (p, A, u, )
is known and we have a noisy observation Y. The knowledge of the parameter can
e.g. be obtained through training data sets observed under similar conditions as the
current data.

Similar problems are found in Baddeley & van Lieshout (1993) which consider a point
process description of an image and cluster center estimation in a clustered point
pattern. Cressie & Lawson (1998) and Dasgupta & Raftery (1998) are about detection
of mines in minefields and are also similar.

We use a Bayesian approach and have a prior distribution L(X) on X. The prior
distribution gives regular point patterns, and it expresses that trees in planted and
managed forests (as our images) tend to be placed regularly in the area.

The posterior distribution for the true points is L(X|Y,0) o« L(Y|X,0)L(X). We
explore this posterior distribution by Markov chain Monte Carlo (MCMC) samples
from the distribution. We make a sampler of Metropolis-Hasting type along the lines
in Geyer & Moller (1994), Geyer (1999), and Green (1995). In order to avoid the huge
sum in (1) we consider the matching s as missing information here and we simulate
both the true point positions X and the unobserved matching s. The expression for the
posterior distribution is L(X, s|Y,0) oc L(Y, s|X,0)L(X) which is easy to compute.

2.4 Extensions to several observations of a point process

An extension of Section 2.3.2 and Lund et al. (1999) is the situation with several
independent noisy observations of the same point pattern. The likelihood is easily
found by multiplying the likelihoods for the individual observations, but the MCMC
algorithm needs to be extended compared to Lund et al. (1999). A further complication
is that points belonging to different observations should also somehow be matched.

We could improve the analysis of the forest data described in Section 2.1.1 by including
several images taken from different postions compared to the ground and the sun. Then
it is natural to estimate the true positions X = {Xj,..., X} in three-dimensional
real world coordinates, and a problem is that each image just has a two-dimensional
observation of the tree tops. Instead of extending the above model for point processes
observed with noise to this setup I outline another way to do this analysis. It combines
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the image analysis and point process analysis steps into one analysis. This has the
advantage of utilizing the information in the images better, but will on the other hand
be more tailored to this specific problem. The analysis combines ingredients from the
above analysis as well as Baddeley & van Lieshout (1993) and van Lieshout (1994).

Let X = {Xj,..., X} be the three-dimensional coordinates of the tree tops to be
estimated and assume that we have observed ¢ images Zi,...,Z, with independent
noise. For each image Zj there is a function fj that transforms a three-dimensional
point X; into two-dimensional image coordinates fi(Xj;).

For each of the ¢ images we make an artificial image given the X points. On top of
each of the positions fr(X1),..., fx(Xn) we put a template for the image like the one
in Figure 2. The template models the mean image around a tree top. At this stage
we must decide how to model the mean image outside the templates and what to do if
the templates overlap because the tree tops are close together. One solution could be
to use a constant mean image outside the templates and favour the template for the
tree closest to the camera.

Based on these “mean images” we can write a likelihood L(Z|X) for each image. It
would be preferable if this likelihood allowed for the possibility of loosing a tree in
the image by a certain probability, say 1 — pg, and allowed for a small movement of
the template at position fx(X;). The movement is necessary because the fj functions
are fixed and the X; positions are common for all the images so some disturbance
should be allowed. We multiply the likelihoods for each image to obtain a likelihood
L(Z|X) =[I}_, L(Z| X) for the sequence of images.

We could now proceed similar to the analysis in Section 2.3.2. Put a prior L(X) on the
three-dimensional X-coordinates and investigate the posterior distribution L(X|Z) o
L(Z|X)L(X) of the positions given the images. Some kind of Markov chain sampling
from the positions will probably be involved here.

I would expect this idea to work reasonable well with 3-4 images. However, the above
description is just an outline and quite some details must be filled in for this idea to
work smoothly.

2.5 Extensions to development in time

The data collection method described in the previous sections is easily applied to the
same area over time. This give us detailed information on the development of each
individual tree. If we have obtained the positions of the tree tops in real world three-
dimensional coordinates as described in Section 2.4 we get information on the ground
position of each tree and the growth of the tree between measurements. This increases
the use of models for the competition between trees that take their positions into
account. Lund (1998) describe one such model for the survival times of Sitka spruce.



3 Perfect simulation of point processes

3.1 Introduction

Propp & Wilson (1996) started a new area of probability theory called perfect simula-
tion. The basic goal is to simulate from a target distribution 7 by designing a Markov
chain X; that has 7 as its stationary distribution and then monitor the convergence of
the chain. Methods for designing Markov chains with 7 as its stationary distribution
have existed for a long time, see e.g. Gilks et al. (1996) for an overview. Propp &
Wilson (1996) contributed a new method of monitoring convergence of the Markov
chain such that the output is known to come from 7 exactly. Previously the Markov
chain X; was run for a long time until it was believed to be sufficiently close to station-
arity. Even though theoretical results on convergence are possible, for instance for the
Metropolis-Hastings sampler for points processes (Geyer & Mgller, 1994), they may be
of little practical use (Geyer, 1999, Section 3.8). An introduction to this new method
called Coupling From The Past (CFTP) can be found in Lund & Thonnes (19995, Sec-
tion 4) in this thesis. The recent overview papers Thonnes (1999) and Dimakos (1999)
give a more thorough introduction than contained in Lund & Thonnes (19995). A full
annotated and updated bibliography on the area of perfect simulation can be found on
David Wilsons homepage, http://dimacs.rutgers.edu/"dbwilson/exact.html/.

3.2 Perfect simulation papers in this thesis

This thesis contains two manuscripts on perfect simulation. Lund & Thonnes (1999a)
tries to develop a new perfect simulation algorithm for locally stable point processes
based on Metropolis-Hastings simulation of point processes (Geyer & Mgller, 1994).
This algorithm would be conceptually simpler than the algorithm described in Kendall
& Moller (1999). However, some open questions still remain unsolved as discussed in
the following Section 3.4. The paper Lund & Thonnes (1999b) develops a perfect
simulation algorithm for the posterior distribution of the true unobserved points in
the reconstruction problem in Section 2.3.2.

Perfect simulation of locally stable point processes is considered in Kendall & Mgller
(1999). They describe two methods based on spatial birth-and-death processes and
Metropolis-Hastings simulation, respectively — the former being much simpler than
the latter.

The perfect simulation algorithm in Lund & Thonnes (1999b) is based on spatial birth-
and-death processes whereas the non-perfect algorithm used in Lund et al. (1999) is
based on Metropolis-Hastings simulation. One difference between the two approaches,
apart from the perfect simulation aspect, is the following. To use the Metropolis-
Hastings simulation algorithm we must be able to compute [,. k(y|X;, u, X) dy whereas
the spatial birth-and-death algorithm just requires us to be able to make a coin flip
that has probability [,. k(y|Xi,u, ) dy of heads. In the Metropolis-Hastings set-
ting the value of [,. k(y|X;,n, 3)dy is required to make a coin flip with probabil-
ity o = min(1, [,. k(y|Xi, 1, X) dy x a factor) of heads and it is impossible to do
the a-coin flip without knowing the value of [,. k(y|X;, u, ) dy. The approximation
J4e k(Y| X, 1, E) dy = 0 is used in Lund et al. (1999) to avoid the calculation of the
integral.
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3.3 Rejection sampling

The rejection sampling method is a well-known method to generate samples from
a target distribution 7 with unnormalized density f on a space € equipped with a
suitable c-algebra and a reference measure y. We will repeat it here because it is
simple, because we can demonstrate how to do rejection sampling for the problem
in Lund & Thonnes (1999b), and because some of the perfect simulation algorithms
are clever applications of rejection sampling (Fill, 1998; Fill et al., 1999).

Assume that we have another distribution p with unnormalized density g on the same
space, and that we are able to simulate easily from p. Assume further that g dominates
f such that f(z) < g(z) for all x € Q. The distribution p is called the proposal
distribution.

Rejection sampling:

Simulate X according to u. Accept X with probability f(X)/g(X). If X is not accepted,
then simulate a new X and continue until the simulated X 1is accepted. The returned
sample s distributed according to .

It can easily be seen from the following simple lemma that this procedure returns a
sample from the target distribution .

Lemma If X is distributed according to p and U is distributed uniformly on [0, g(X)]
given X then (X,U) is uniformly distributed on {(z,u) € Q x [0,00[: 0 <u < g(x)}.

If (X,U) is uniformly distributed on {(xz,u) € Q x [0,00[: 0 <u < f(x)} then X has
marginal distribution .

The uniform distribution on a subset of {2 x [0, co[ means the distribution with density
equal to a constant times the indicator function of the set with respect to the product
measure v ® [ where [ is the Lebesgue measue on R.

With the notation from Lund & Thonnes (19995) we can now describe how to generate
a perfect sample from the posterior distribution of the true points given the noisy
observation in the problem of Section 2.3.2. The proposal distribution is the stationary
distribution of the dominating chain, described in Section 5.1 of the paper, conditioned
to have at most one X-point matched to each Y-point. It is easy to sample from this
distribution as it is basically a Poisson process and the result of the conditioning can
be stated explicitly. This sample is then accepted by probability L(X)/ (X\*)*(X),

The problem with rejection sampling in this particular example is that it is too slow
to be useful, that is the number of rejections before acceptance is too high. In general
another complication that prevents us from using rejection sampling is that we cannot
find a suitable proposal distribution with a dominating density.

3.4 Convergence of the target process?

This section is intended to be read after Section 1 up to and including Section 5.2
in Lund & Thonnes (1999a) have been read. Shortly before submission of this thesis
Jesper Mgller pointed out to me our construction in Section 5 of Lund & Thonnes
(1999a) had to be carefully checked. To be more precise, the convergence of X to the
correct equilibrium distribution had to be proven rigorously. In order for the algorithm
in Lund & Thonnes (1999a) to work, we need that the target chain X, coupled to the
dominating chain Z, marginally converges in distribution to the target distribution =
(Kendall & Mpgller, 1999, Theorem 3.1). At present there is no rigorous prove for the



3.4 Convergence of the target process?

convergence of X. What follows is a discussion on a more abstract level than in Lund
& Thonnes (1999a) of the requirements needed to ensure convergence of the target
chain X defined in the paper. The reader should be able to follow this section without
having to read the paper.

Let © be the state space of Z and X. Assume that Q has a partial order <, and has
a state called 0 and a reference measure . The special state 0 is a minimal element
in , that is 0 = z for any z € Q.

In our setting €2 is the point process state-space, all finite subsets of a set C' C R?, where
C' is bounded and Borel. The minimal state is the empty point configuration, 0 = ().
The reference measure v is the Poisson process at unit rate and the partial ordering
is the set inclusion. The transition kernels for Markov chains we use are Metropolis-
Hastings kernels for the sampling of point processes (Geyer & Mpller, 1994; Geyer,
1999).

Assume that Z = (Zy,7Z,...) is a stationary, time-reversible, Markov chain with
invariant distribution p. Suppose Zj is distributed according to u. We assume that Z
evolves according to a transition kernel Q;(A) = [, ¢(z,y) dy(y) which is aperiodic,
irreducible, and positive Harris recurrent. The state 0 € Q) is an ergodic atom for 7,
that is the probability of Z visiting 0 in the time interval [0, ¢] tends to 1 as ¢ — oo.

Let P? be a family of Markov kernels on 2. The family is indexed by a value z € 2
and has density p, P7(B) = [ p°(x,y) dy(y). Suppose that for each fixed z € Q the
kernel P? defines an aperiodic, irreducible, and positive Harris recurrent Markov chain
with invariant distribution 7. Thus the n-step transition kernel based on P? converges
to m as n — oo (Geyer, 1999).

Let X = (X1, Xa,...) be a process defined in the following way. Let X; = x be a
determistic starting state. In order to get from X; = z; to X;11 choose X;,1 according
to the distribution PZ¢(-).

In our specific setting we couple the update of X; according to Pﬁf( -) to Z such that
X1 2 Zigr.

Conjecture The marginal distribution of X; converges weakly to m as t — oo.
We now give an outline of a proof with comments on the parts still to be shown.

Proof: Due to the dependence on Z the X chain is not a Markov chain. Instead we
consider the joint distribution of Z and X and (Z;, X;) is a Markov chain.

Consider the Markov kernel R, ;(A x B) = Q,(A)PZ(B) which has the invariant
distribution p ® w. In order for this to be the only invariant distribution we need
irreducibility of R, ,. However, the (Z, X) chain described above does not evolve
according to R, ,. We have a coupling of Z and X such that (Z, X) lives on Qy =
{(z,2) €QxQ : x < z}. This (Z, X) chain evolves according to a kernel R, , and the
relation between szz and R, ; is that they agree on the marginal distributions. That
is R, (A x Q) =Q,(A) = R, (A x Q) and R, ,(Q x B) = P(B) = R, ,(Q x B).

R, .z defines a irreducible, aperiodic, positive Harris recurrent chain such that an invari-
ant distribution with density f exists. Furthermore, the (Z, X) chain evolving accord-
ing to R, .z converges towards this distribution which must have support Qs CQAxQ.

Now, the idea is to show that the marginal stationary distribution of X, f(z) =
Jo [(z,2)dy(2), is w. Further, let f(z|x) denote the conditional density of Z given
X = z for the stationary distribution.

11
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Because f is invariant for R, ; we know that

f@wﬂ%ﬁAxfﬂﬂvxwwﬂﬁZ/;Bﬂ%@dhxvﬂzw-

QxQ

With A x B = X B we get

f@wﬂmBMwa@w%=Af@Mwm,

QxQ

and if we write f(z,z) = f(x)f(z|x) we get

/f /7 2| PE(B) dy(2) do (s /f ) dy(a

It is seen that the stationary distribution f of sz has the marginal distribution
fQ z,x) dy(z) = 7(z) if and only if 7 is invariant for the transition kernel P, defined

=/fmw%@wﬂa
Q

Whether r is invariant for P, or not is still an open question. O

It is obvious that 7 is invariant for P, if (i) Z and X are independent in f or if (i)
P? does not depend on z. The first case means that we have no coupling between Z
and X and they evolve according to R, ,, and the second case means that X evolves
as a Markov chain in itself. Neither of these cases applies here.

The kernel P, is a form of what Geyer (1999) call “state dependent mixing”. In
state dependent mixing a transition kernel is chosen according to a distribution which
depends on the current state of the chain. However, if the target stationary distribution
is invariant for each transition kernel this does not imply the invariance for the mixture
transition kernel as pointed out in Geyer (1999, Section 3.4.2). Properties specific to
our problem must be used to prove the conjecture or adjust P, to ensure that it has
7 as the stationary distribution.
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